The SBND Hardware Trigger CPAD 2019

David Rivera on behalf of the SBND collaboration

University of Pennsylvania

December 9, 2019

Table of Contents

- Introduction
- 2 Triggering
- Status
- 4 Backup

Short Baseline Neutrino (SBN) Program

- Three surface detectors: SBND, MicroBooNE, and ICARUS
- Liquid Argon Time Projection Chambers (LArTPC) in the Booster Neutrino Baseline (BNB) at Fermilab
- Goal: unambiguous discovery of sterile neutrinos or a 5σ exclusion of the 3+1 oscillation parameter space allowed by the LSND and MiniBoone anomalies

Short Baseline Near Detector (SBND)

- SBND will sample the unoscillated flux of neutrinos 110m from the target
- 112 tons of active LAr divided into two, 2m drift regions
- 11,264 channels of charge readout
- Complementary Cosmic Ray Tagger (CRT)
- Complementary Photon Detection System (PDS)
 - 120 PMTs + 192 ARAPUCAS

SBND - exploded view

PDS Readout

Example mapping of PMTs to CAENs

- PMT waveforms are digitized by commercial CAEN V1730 modules
- 16 ch/board
- Each CAEN V1730 provides:
 - PMT pair majority trigger (at least N pairs have crossed threshold)
 - Analog output proportional to number of self-triggered pairs

Cosmic Ray Tagger

Photo credit: Tom Brooks

Photo credit: Igor Kreslo

- Roughly 90% coverage

CRT Triggering

Suggested triggers by Michelle Stancari.

Calibrating with the CRT

- Through-going muons parallel to the wire plane are useful for determining electron lifetime
- Cathode-crossing muons are useful for alignment in time and space

- CRT-A: Vertical through-going
- CRT-B: Stopping muons (Michel sample)
- CRT-C: Horiz. through-going Anode-Cathode crossing muons
- CRT-D: Horiz. through-going "parallel" muons

Requirements

- 1.596 $\mu s/\text{spill} \cdot 1.32 \times 10^8$ spills = 211 seconds "in-spill" over the three years
- Neutrino interactions/spill = 7,251,948/1.32 \times 10⁸ = 0.055
 - ~ 1 neutrino interaction every 18 spills
- Our data diskwrite budget is roughly 5Hz and will include:
 - Beam neutrino candidates
 - Random Triggers
 - Calibration Triggers (see slide 7)
- PDS and CRT requirement: ~ 1 ns timing resolution

The Penn/Photon Trigger Board

Some design considerations:

- Can make a prompt trigger decision based on Auxiliary detector information
- Something flexible, configurable, and compact
- Easy to interface with the DAQ
- Documents the trigger decision and what led to it

The PDS Trigger Hardware

Analog Master Trigger Cards (MTC/A)

The Penn/Photon Trigger Board (PTB)

PDS Vertical Slice Rack

MTC/A Summing

- Perform fast analog sums of the number of PMT pairs that have crossed thresholds across multiple V1730s
- Fully asynchronous, cascaded commmon base pair summing

Analog Master Trigger Cards (MTC/As)

- 20 input channels per MTC/A
- Three DC thresholds (LO, MED, HI) per MTC/A that represent three numbers of PMT pairs
- Useful for identifying events that produce localized flashes
- Useful for events that trigger many PMT pairs across multiple boards

Penn Trigger Board IO

- 33 Input Trigger Primitives:
 - 10 PDS Threshold Triggers
 - 6 MTC/A PMT Multiplicity triggers
 - 14 CRT Triggers (X & Y for each of 7 Planes)
 - 3 Accelerator Complex Early Warnings
 - (Possible Upgrade) 32 additional inputs from CAEN V2495
- 1 Pulse Per Second (1PPS) and reference clock from the timing system

Penn Trigger Board IO (Continued)

Penn Trigger Board IO (Continued)

Threshold Configuration (TTL)

Synchronization Scheme

• The timing system will distribute reference signals (e.g. 1PPS)

PTB Core

- Microzed onboard the PTB contains SoC (System-on-Chip)
 - Processing System (PS) boots a Linux kernel and root filesystem
 - Programmable Logic (PL) FPGA with high-bandwidth/high-performance interconnects to PS
- FPGA firmware can be flashed remotely
- Data Acquisition runs as a process initialized on power up
 - Soft Reset, Initialize, Start Run, and Stop Run
- Communicates through a TCP socket with a client running on the DAQ server

PTB Overview

Table of Contents

- Introduction
- 2 Triggering
- Status
- 4 Backup

Input processing

- All inputs are latched on a 50MHz clock
- Masks decide which input channels participate
- Input Delay Compensation delay signals by N clock cycles
- Signal Shaping defines coincidence gates (stretch to pulse N clock cycles long)

All are input configuration parameters passed to PTB by the DAQ through a .JSON file

Triggers

Low Level Triggers (LLTs):

Single subsystem

High Level Triggers (HLTs):

- Drive the readout decision of the TPC and the complementary subsystems
- Based on LLTs and can be across multiple subsystems
- Can be prescaled

Trigger Words

- Low Level Trigger (LLT) Words
- High Level Trigger (HLT) Words
- Timestamp Words sent periodically to keep data moving
- Channel Status Words:
 - debug mode any time there is a transition in any of the inputs from low to high,
 - standard mode in ProtoDUNE status words are issued only when an HLT is generated

PDS Triggering Example

Neutrino interaction

- Requiring excess light in coincidence within the 1.6μ spill:
- ≥ 3 CAENs on the beam side meet majority mode

Testing

- Scatter Gather DMA allows us to read out at much higher rates (>1MHz of 128-bit words)
- Triggering logic is all synchronous 100ns of latency
- The Central Trigger Board in ProtoDUNE is the same PCB and has been running successfully in ProtoDUNE-SP

Central Trigger Board for ProtoDUNE-SP

Table of Contents

- Introduction
- 2 Triggering
- 3 Status
- 4 Backup

SBND Integration Tests

We have a DAQ test stand to commission each hardware readout component (TPC, PDS, and CRT) as well as the trigger

Plans going forward

• The trigger is currently being incorporated into our event simulation

A complementary software filter is under consideration

- To achieve full granularity on the CRT at the strip level
- To achieve higher granularity on the PDS at the PMT level

Summary

- The PTB is flexible and fast
- The hierarchical trigger successfully ran successfully in ProtoDUNE
- The PTB will:
- improve event selection in SBND
- Drive the prompt readout of all photodetectors

Table of Contents

- Introduction
- 2 Triggering
- Status
- 4 Backup

Backup

Photon Detection System in SBND

Rich photon detector system with:

- 120 Photo Multiplier Tubes (PMTs) – (96 TPB-coated + 24 uncoated)
- 196 ARAPUCAS light traps with dichroic filter (3 variants)

Event selection

- PDS and CRT can give us a t_0 for cosmics entering the detector
- Can discriminate cosmic ray activity with t0 outside of bunch width
 - caveat : need good spatial resolution as well
- Online: can choose to veto events crossing a certain level of activity from the CRT

Trigger System Overview

Timing Scheme

- For PDS Trigger system, WR will be used to distribute the 1PPS and the 10 MHz, GPS-locked clock
- A fanout module can be used to sync all 8 CAEN digitizers + PTB
- If the 1PPS and the GPS clock stay edge-aligned, we can use the GPS clock to interpolate
- PTB's internal timestamp clock will be phase-locked to GPS clock and will run at 50 MHz
- WR 1PPS signal will simultaneously:
 - Reset 28-bit rollover (fine time) counter
 - Query NTP time on Linux Side

Trigger Logic Unit (TLU)

- Configure whether PDS trigger is required or not for trigger pulse-train to CAENs
 - Utilize originally allocated ports PDS→Beam, CRT→Non-beam
 - Similar to what is done in ProtoDUNE;
 CTB issues beam or non-beam
 commands to timing system
 - Mitigates need for veto logic to be implemented in external NIM hardware

Functional diagram of PTB trigger logic unit state machine.

What can we trigger on?

- Beam Early Warning signals simplest beam trigger
- We expect scintillation light from our neutrino interactions
 - Trigger on coincidences between PDS and spill arrival (derived from Early Warning signal)
- Coincidences in X and Y panels of the CRT
- CAEN board-level majority triggers
- MTC/A multiplicity sum over pairs of PMTs
- Random (or fixed-frequency) triggers (in- or out-of-spill)
- Nevis Global Trigger
- Spare NIM inputs
- CAEN V2495 (possible upgrade) can perform additional digital logic across multiple CAEN V1730

Limit

Maximum CAEN Throughput: 80 MB/s Maximum Trigger Bandwidth per board:

$$r_{\text{board}} = 1 \text{board} \times 16 \frac{\text{ch}}{\text{board}} \times 16 \frac{\text{bits}}{\text{sample} \cdot \text{ch}} \times 500 \frac{\text{samples}}{\mu s} \times \frac{1}{\text{board} \cdot \text{trigger}}$$

$$= 1.28 \times 10^{5} \frac{\text{bits}}{\text{trigger} \cdot \mu s} \times \frac{1 \text{B}}{8192 \text{ bits}} = 15.625 \frac{\text{kB}/\mu s}{\text{trigger}}$$
(1)

Solving for the maximum number of triggers per board per second **per** μs **being read out**:

80 MB/s =
$$r_{\text{board}} \times N_{\text{triggers}} \cdot \Delta t$$

$$\Rightarrow \frac{N_{\text{triggers}}}{\text{sec}} \cdot \frac{\Delta t}{\mu s} = 5242.88$$
(2)

BNB/NuMI Structure

- BNB/NuMI beam extraction examples in figure 11 below
- 1.33s cycles divided into 20, equally-spaced spills

Bill Badgett's graphical represenation of BNB/NuMI cycles

- 8/20 spills extracted per 1.33s cycle 6Hz (best case)
- Expect more like 5Hz

Microzed Details

- Processing System (PS) onchip BOOT ROM + dual core ARM Cortex A9 processor + 256KB SRAM used to run a Linux distribution
 - Xilinx First Stage Boot Loader intializes the PS and flashes the PL firmware
 - U-Boot takes over in the second stage to read and load the kernel image and the root file system
- We utilize Ubuntu 16.04 as our Linux distribution

BLOCK DIAGRAM

Booster Neutrino Beam

- Protons are accelerated up to 8GeV (KE) in the Booster ring and extracted for the Booster Neutrino Beamline
- 8GeV protons strike the Be target at MI-12
- Charged pions are focused and serve as our (anti)neutrino source upon decaying in flight

Parameter	Value
Exposure	$6.6 imes 10^{20}$ P.O.T
Spills	$1.32 imes 10^8$ spills
Avg. Spill rate	5Hz
Spill duration	1.596μ s
Bunches/spill	84
Bunch spacing	19ns
Bunch spread	1ns

Neutrino Interactions

Estimated Neutrino Events for SBND with 6.6×10^{20} P.O.T. delivered over 1.32×10^8 spills.

Process	No. Events	Events/spill	Stat. Uncert.
$ u_{\mu}$ CC Inclusive	5,212,690	3.95×10^{-2}	0.04%
$ u_{\mu}$ NC Inclusive	1,988,110	1.51×10^{-2}	0.07%
$ u_e$ CC Inclusive	36,798	2.79×10^{-4}	0.52%
$ u_e$ NC Inclusive	14,351	1.09×10^{-4}	0.83%
Total	7,251,949	5.5×10^{-2}	0.03%

Numbers taken from table of the SBND Conceptual Design Report (here)

Back of the envelope trigger rate

- Assumptions:
 - 100% trigger efficiency on all ν events
 - 10kHz of cosmics entering the active volume (AV)
 - Full readout = three, 1.28 ms readout windows per global trigger
- 211 seconds of "in-spill time"
- 7,251,948 interactions $\times 3 \times 1.28$ ms = 27,848s of readout
- No. cosmics \sim 10kHz \times 27, 848s = 2.78 \times 10⁸ cosmics
- Avg. spill rate \times No. neutrino interactions / spill = 5Hz \times 0.055 = 0.275Hz

- ~38 cosmics piling up in our full readout window along with our neutrino event!
- What can we do about it?

Timing Scheme Continued

 Possible to account for latency between the PTB and the WR nodes by echoing back to WR and measuring this externally with sub-ns precision (e.g. a Time-to-Digital Converter)

$$T_{\mathsf{global}} = (\mathsf{Counts} \; \mathsf{since} \; \mathsf{last} \; \mathsf{PPS}) \times \mathsf{clock} \; \mathsf{period} + T_{NTP} + \mathsf{Offset}$$
 (3)

Where: $T_{NTP}=$ Global time rounded to the nearest *proper* second, and *Offset* accounts for latency for receiving 1PPS signals **Note:** The NTP server will have \sim (10 ms) accuracy, PTB will talk to this server through Linux side

PTB Firmware

