QPix Technology: Research and Development towards kiloTon scale pixelated LArTPC

Jonathan Asaadi University of Texas at Arlington

Work based on original paper by Dave Nygren (UTA) and Yuan Mei (LBNL): arXiv:1809.10213

- Liquid Argon Time Projection Chambers (LArTPC's) offer access to very high quality and detailed information
- Leveraging this information allows <u>unprecedented access to detailed</u> <u>neutrino interaction</u> specifics from MeV - GeV scales
- Capturing this data <u>w/o compromise and maintaining the intrinsic 3-D</u> <u>quality</u> is an essential component of all LArTPC readouts!

- Conventional LArTPC's use sets of wire planes at different orientations to reconstruct the 3D image
 - Challenge in reconstruction of complex topologies

- kiloTon scale LArTPC's use "wrapped wire" geometries to reduce the number of readout channels
 - Challenging to engineer such massive structures
- Being able to readout using pixels instead of wires could off a solution
 - "Cost" of many more channels! 2 meter x 2 meter readout
 - 3mm wire pitch w/ three planes = 2450 channels
 - 3mm pixel pitch = 422,000 channels
- Requires an "unorthodox" solution

W 915.2

- Simulation studies comparing the readout of 2D projective LArTPC's to 3D pixel LArTPC's shows that <u>3D</u> <u>based readout offers significant</u> improvement in all physics categories!
 - v_e-CC inclusive: 17% gain in efficiency and 12 % gain in purity
 - ν_μ-CC inclusive: 10% gain in efficiency for 99% purity
 - NC π^{0} : 13% gain in efficiency and 6% gain in purity
 - Also offers gains in Neutrino-ID classification and final state topology ID

paper in preparation (additional details in backup)

Table 2: Confusion matrix for neutrino interaction.

		3D			2D		
		Truth Label			Truth Label		
	2	$v_e CC$	v_{μ} CC	NC	$v_e CC$	v_{μ} CC	NC
Predicted Label	v_e CC	0.96	0.01	0.02	0.93	0.02	0.03
	v_{μ} CC	0.02	0.95	0.07	0.02	0.91	0.07
	NC	0.02	0.04	0.91	0.05	0.07	0.90

*** Improvements like these can lead to significantly shorter experimental running time required to meet desired physics goals!

- Kiloton scale LArTPC's (such as DUNE) afford a huge "big data" challenge to extract all the details offered by LArTPC
 - 1 second of DUNE full stream data
 ~4.6 TB (for 1.5 million channels)
 - 1 year of full stream data ~ 145 EB (exabytes)
- However, most of the time there is "nothing of interest" going on in the detector
 - But you must be ready "instantly" when something happens (proton decay, supernova, beam event, etc)
- To readout such massive detectors with pixels requires an enormous number of channels
 - \circ *O* (130 million) per 10 kTon at 4mm pitch
 - Requires an "unorthodox" solution

An "unorthodox" solution

- The Q-Pix pixel readout follows the "electronic principle of least action"
 - Don't do anything unless there is something to do
 - Offers a solution to the immense data rates
 - Quiescent data rate $\mathcal{O}(50 \text{ Mb/s})$
 - Allows for the pixelization of massive detectors
- Q-Pix offers an innovation in signal capture with a new approach and measures time-to-charge:(ΔQ)
 - Keeps the detailed waveforms of the LArTPC
 - Attempts to exploit ³⁹Ar to provide an automatic charge calibration
- "Novelty does not automatically confer benefit"
 - Much remains to be explored

Q-Pix: The Charge Integrate-Reset (CIR) Block

 Charge from a pixel (In) integrates on a charge sensitive amplifier (A) until a threshold (V_{th}~ΔQ/C_f) is met which fires the Schmitt Trigger which causes a reset (M_f) and the loop repeats

Q-Pix: The Charge Integrate-Reset (CIR) Block

- Measure the time of the "reset" using a local clock (within the ASIC)
- Basic datum is 64 bits
 - 32 bit time + pixel address + ASIC ID + Configuration + ...

What is new here?

- Take the <u>difference</u> between <u>sequential</u> resets
 - **Reset Time Difference = RTD**
- Total charge for any $RTD = \Delta Q$
- RTD's measure the instantaneous current and captures the waveform
 - Small average current (background) = Large RTD
 Background from ³⁹Ar ~ 100 aA
 - Large average current (signal) = Small RTD
 - Typical minimum ionizing track ~ 1.5 nA
- Signal / Background ~ 10⁷
 - Background and Signal should be easy to distinguish
 - No signal differentiation (unlike induction wires)

Reset Time Difference

How the time stamping works

- One free running clock per ASIC (50-100 MHz)
 - $\circ~$ Required precision for DUNE $\delta f/f$ ~10^-6 per second
 - Expect this to be easily achieved in liquid argon
- Time stamping routine has the ASIC asked once per second "what time is it?"
 - ASIC captures local time and sends it
 - Simple linear transformation to master clock synced to GMT
 - RTD's calculated "off chip"
- Has this idea been realized before?
 - YES! In ICECUBE (by Nygren)
 - Oscillator precision achieved > 10⁻¹⁰ /s (hard to measure)

Q-Pix ASIC Concept

• 16-32 pixels / ASIC

- 1 Free-running clock/ASIC
- 1 capture register for clock value, ASIC, pixel subset
- Necessary buffer depth for beam/burst events
- State machine to manage dynamic network, token passing, clock domain crossing, data transfer to network (many details to be worked out)
- Basic unit would be a "tile" of 16x16 ASICs (4092 4mm x 4mm pixels)
 Tile size 25.6 cm x 25.6 cm

Q-Pix Consortium

- A consortium of universities and labs has formed to realize the Q-Pix concept
 - Done in close collaboration with LArPix (JINST 13 P10007) readout for the DUNE near detector
- Four central ideas being worked on
 - Physics Simulations: Quantify the conferred benefit of pixel vs. wire readout and the requirements of the ASIC design
 - CIR Input: all extraneous leakage current at the input node needs to be small (aA)
 - Clock: δf/f ~10⁻⁶ per second
 - Light Detection: Exploring new ideas using photoconductors on the surface of the pixels (see the next talk from E. Gramellini) ¹⁵

Fermilab

Physics Simulation

 To quantify the range of currents the Q-Pix ASIC will see we are using simulations of neutrino interactions in argon

- We can take the charge seen by a pixel and translate this into current as a function of time
- We can then use this simulation to set the physics requirements on the Q-Pix ASIC
 - Allowed reset time, minimum ΔQ , etc...

Physics Simulation

Measurement of Longitudinal Diffusion

• Using a small sample muons a novel technique in Q-Pix can be seen

The electron current measured on a plane perpendicular to the drift direction at a distance d from a point source is given by

$$j(t) = \frac{n_0}{\sqrt{4\pi D_L t}} \exp\left(-\frac{(d-vt)^2}{4D_L t} - \lambda vt\right)$$
(2)

where n_0 is the initial electron density, v is the drift speed, t is the arrival time of the electrons on the plane, and λ is equal to the inverse of the mean free path of the electron.

This function approaches a true Gaussian when $d \cdot v$ is large and D_L is small. For the case being considered $v = 0.1648 cm/\mu s$ and d > 10 cm so, $d \cdot v \ge 1.6 \times 10^5 cm^2/s$. This is large when compared to $D_L = 6.82 cm^2/s$.

The Reset Time Difference (RTD) literally stands for

$$RTD = \frac{\Delta Q}{\Delta t} = j(t) \tag{6}$$

Thus if we plot the average RTD seen over a sample as a function of the drift distance, we should see the Gaussian relationship

Physics Simulation

- Measurement of Longitudinal Diffusion
 - The average RTD versus the drift length carries the diffusion information
- Allows for a fundamental measurement with few statistics
- $D_{L}^{Measured} = 6.47 \pm 0.97 \text{ cm}^{2/s}$ • $D_{L}^{Simulation} = 6.82 \text{ cm}^{2/s}$

Conclusions

- Readout requirements for kiloton scale LArTPC's offer many challenges to fully exploit the rich data they have to offer
 We must optimize for discovery!!!
- Low threshold pixel based readout can optimize for discovery the impact of these detectors
 - Requires an unorthodox solution
- The Q-Pix concept may afford a way to pixelize a kiloton scale LArTPC and retain all the details of data
 - The devil lives in the details, but an effort is underway with promising preliminary results
 Q-Pix consortium would like the the the till of the the till of the till of the the till of the till o
 - Stay tuned for more updates!

Q-Pix consortium would like the thank the DOE for its support via DE-SC0020065 award

Backup Slides

Q-Pix consortium would like the thank the DOE for its support via DE-SC0020065 award

Intrinsic reconstruction pathologies associated with charge deposited along the direction of the wires

Wire Number

Candidate one-track NC π^0 event from MicroBooNE Run 1 BNB data

- Liquid Argon Time Projection Chambers (LArTPC's) offer access to very high quality and detailed information
- Leveraging this information allows unprecedented access to detailed neutrino interaction specifics from MeV - GeV scales
- Capturing this data w/o compromise and maintaining the intrinsic 3-D quality is an essential component of all LArTPC readouts.

Light Detection

- One very "blue sky" idea currently being considered is to see if the same pixels which collect ionization charge can be used to detect UV photons
 - Currently exploring different thin-film photo-conductors which may offer an opportunity
 - Exploring amorphous Selenium's properties
 - Commonly used in X-Ray digital radiography devices

Incident photons from a 1 GeV muon at 100 cm

If realized, offers a transformative opportunity in LArTPC's

