HydroX: Hydrogen-doped Liquid Xenon to Search for Sub-GeV/c² Dark Matter Particles

Alden Fan

Stanford University / SLAC National Accelerator Laboratory

CPAD 2019

Madison, WI

8-10 Dec 2019

Low mass dark matter

CPAD 2019

A. Fan (SLAC)

Low mass dark matter rate

A. Fan (SLAC)

CPAD 2019

R(cts/10kg/yr) for 10⁻⁴⁵ cm², 10 GeV

Challenge

- Low energy depositions Low energy threshold
- Environmental backgrounds Underground / shielding

Solution

- Kinematics Match target-DM mass
- Extremely rare interaction ____ Large/scalable target mass

 - Detector backgrounds Self-shielding, discrimination, radiopurity
 - Impurities Purification
- Unknown particle physics --- Sensitivity to multiple interaction types

- Low energy depositions ____ Low energy threshold
- Already achieved in LZ (and other G2 DM experiments)
- Environmental backgrounds Underground / shielding

Solution

- Kinematics Match target-DM mass
- Detector backgrounds Self-shielding, discrimination, radiopurity
 - Impurities Purification
- Unknown particle physics --- Sensitivity to multiple interaction types

Unknown particle physics

CPAD 2019

	Solution
	Match target-DM mass
	Low energy threshold
and	other G2 DM experiments
	Underground / shielding
s a l	neavy target (Xe) ination,
	radiopurity
	Purification
	Sensitivity to multiple interaction types

A. Fan (SLAC)

CPAD 2019

Solution		
Match target-DM mas	S	
Low energy threshold		
and other G2 DM experiments		
Underground / shieldir	ng	
s a heavy target (Xe)	ination,	
radiopurity		
w-Z target in LZ, ning benefits of Xe	nteractio	

HydroX: Hydrogen-doped Xenon

1. Dissolve H₂ into LXe

A. Fan (SLAC)

CPAD 2019

2. Look for recoiling proton

HydroX

HydroX advantages: signal yield

Xe recoil: $m_{Xe}=m_{Xe} \rightarrow$ energy lost to heat (Lindhard) \rightarrow O(20%) of energy is observable H₂ recoil: $m_p \ll m_{Xe} \rightarrow all$ electronic excitations $\rightarrow \sim 100\%$ of energy is observable

HydroX advantages: BG mitigation

- Retain self-shielding of LXe
- Vetoes, water tank, intensive radio-cleanliness of LZ
- Fully characterized BG model from LZ

eanliness of LZ

HydroX advantages: SD sensitivity

For equivalent masses of H and Xe:

unpaired proton spin

¹H has 820x more SD sensitivity per kg than ^{nat}Xe

A. Fan (SLAC)

CPAD 2019

unpaired neutron spin

In addition, use **deuterium**: gives both DM-p and DM-n sensitivity

HydroX

HydroX sensitivity

Assumptions:

- Signal yields from SRIM + LZ detector model
- 2.2 kg of H₂ in LXe (2.6% mol fraction)
- Proton recoil S2/S1 is ER-like (no discrimination)
- 250 live-day exposure

SD sensitivity at low mass is unique

R&D

• Will it work?

- What is Henry coefficient?
- Effect on signal generation (light and charge)
- Circulation and cryogenics
- Purification removes H₂
- Ti embrittlement
- H₂ leakage into PMTs
- How do we calibrate?
 - Ultra low energy proton recoils in LXe
 - Effect on discrimination
- How do we make it work in LZ?

HydroX

11

Injecting H₂ into LXe

• XELDA: small TPC constructed at Fermilab

- Originally for measuring ER discrimination for inner shell e-, now for H₂-doping
- One 3" PMT facing four 1" PMTs
- Gas phase circulation, inject H₂ at the condenser

A. Fan (SLAC)

CPAD 2019

Injecting H₂ into LXe

- Is H₂ in the liquid?
- YES, though hard to say how much
 - Measure H₂ in gas space after injection, before and after inducing mixing (circulating)
 - H₂ level in gas space goes down, (by factor 2-3) \rightarrow H₂ is in the LXe

Injecting H₂ into LXe

- TPC still working!
 - S1s and S2s still being produced and can see them
- Loss of S2 yield (as predicted)
- Possible decrease in S1 yield (~10%)

Immediate next steps

XELDA Run 2

- Improved gas analysis
- Inject more H₂
- S1-only mode to measure S1 loss more carefully
 - S2s difficult to measure well in XELDA setup with H₂

H₂+GXe at SLAC

- Use SLAC System Test in room temperature gas-only mode
 - Used extensively for electron emission studies (see R. Mannino's talk)
- Measure effect on S2 yield more carefully

Low energy recoil calibration

- Classic neutron scattering setup: scattering angle gives recoil energy
- Low energy neutron source: 24 keV neutrons from ¹²⁴Sb-⁹Be source
- TPCs for both target and neutron tagger

ng angle gives recoil energy ons from ¹²⁴Sb-⁹Be source

Cryogenics and circulation with H₂-doped Xe

- LZ purifier will remove $H_2 \rightarrow$ Inject and remove H_2 continuously, around purifier
- Options for removing H₂:
 - Distillation column
 - Sparging
- Test at O(100 kg) of Xe using SLAC System Test

Summary

- Many new searches for low mass dark matter
- HydroX is a novel new effort
 - Hydrogen-doped LXe

 - SI and SD sensitivity
 - Leverage success of conventional LXe TPCs
- R&D needed; already underway
- First proof that TPC works with H₂+Xe

• Optimize kinematic matching for low mass DM (0.1-5 GeV/c²)

The original HydroX

CPAD 2019

Backup

HydroX

A. Fan (SLAC)

comes from an experiment utilizing a different technology, and thus subject to a different set of

comes from an experiment utilizing a different technology, and thus subject to a different set of

- Dissolving H₂ in LXe has not previously been done
- But lots of other stuff has
- LXe is an efficient solvent

Mole fraction in liquid (solvent) at 1 atmosphere gas (solute) above liquid

keV Iron Neutron source (keVIN)

- ¹²⁴Sb-⁹Be source gives 24 keV neutrons + gammas
- Surround source with Fe: stops gammas and passes neutrons ("notch" at 24 keV) Alternate configuration to get 2 keV neutrons:
- - Degrade neutron energy down with poly
 - Exploit 2 keV notch in scandium (²¹Sc)

CPAD 2019

A. Fan (SLAC)

