Measurements of electron emission reduction from grid electrodes in the R&D test platform for the LZ experiment

Rachel Mannino University of Wisconsin - Madison CPAD 2019

On Behalf of the LZ Experiment

LZ detector

LZ TPC

LZ grids

R. Mannino

Voltage

(kV)

5.75

-5.75

-50 /

-100

-1.5

Grid production: weave

- Commercially available wire mesh does not come in the LZ grid diameter
- Challenges: Maintain wire spacing & tension
- Video of weaving process

Installing warp wire through the heddles

Grid production: glue

R. Mannino

University of Wisconsin – Madison

CPAD 2019

Electron emission

- Electron emission from wires is problematic:
 - Impacts low energy dark matter search → Accidental coincidence can mimic low energy events & limit S2-only search
 - Affects detector operability → high DAQ rate from electron trains can increase dead time

LZ simulated data set for a background-only 1000~live day run and a 5.6 tonne fiducial mass. ER and NR bands are indicated in blue and red, respectively (solid: mean; dashed: 10% and 90%). The 1 σ and 2 σ contours for the low-energy ⁸B and hep NR backgrounds, and a 40 GeV/c² WIMP are shown as shaded regions.

40

S1c [phd]

sensitivity

60

70

80

50

2.5

Ó)

10

20

30

Electron emission mitigation

- 1. **Dust removal:** Construct grids in a cleanroom & remove dust
- 2. **Passivation:** Changes chemical composition of the oxide layer & increases the Cr:Fe ratio.

Collaborators at ICL measured reduction of electron emission from passivation

Tomás, A., et al. "Study and mitigation of spurious electron emission from cathodic wires in noble liquid time projection chambers." Astroparticle Physics 103 (2018): 49-61.

System test platform at SLAC

R. Mannino | University of Wis

University of Wisconsin – Madison

Small 2-PMT gas-only detector

- Scaled-down extraction region
- Quick turnaround
- Xenon gas, 3.3 bar

Gas test nitric passivation

35% Nitric acid at room temperature for 30 min

Figure 4.7: Electron emission rate before and after nitric passivation at APC: (a) rate vs. $\Delta V_{\text{T-B}}$; (b) Fowler-Nordheim plot.

W. Ji PhD, Stanford, 2019.

Gas test citric passivation

Figure 4.8: Electron emission rate before and after citric passivation at APC: (a) rate vs. $\Delta V_{\text{T-B}}$; (b) Fowler-Nordheim plot. The blue (or green) dashed line fit to the F-N equation gives the before (or after) entry for APC treatment in Table 4.1.

W. Ji PhD, Stanford, 2019.

Small 32-PMT detector

Designed as TPC to test cryogenics, circulation, HV

Test extraction region in gas-only mode by removing field cage

System test: Large gas-only detector

Emission from dust

Results from passivation of a prototype grid are being analyzed.

LZ passivation & grid cleaning

- Gate grid passivated in 3-5% citric acid.
 - Cathodic and in the electron extraction region
- Each grid was spray washed with DI water and UV-inspected for dust before assembly.

HV in future experiments

- HV issues affect many noble liquid detectors.
 - Fermilab's 2013 HV in Noble Liquids workshop
- Future larger-scale detectors affected by HV issues.
 - Scaling up can increase likelihood of dust or surface defects on electrodes.
- Techniques to mitigate electron emission may become increasingly important.

Conclusions

- SLAC R&D System Test studied passivation as a treatment for electron emission reduction.
- Promising results observed in many prototype grids
- Paper in preparation now.

Thank you

- 1. Center for Underground Physics (South Korea) 14. Brandeis University (US)
- 2. LIP Coimbra (Portugal)
- 3. MEPhI (Russia)
- 4. Imperial College London (UK)
- 5. Royal Holloway University of London (UK)
- 6. STFC Rutherford Appleton Lab (UK)
- 7. University College London (UK)
- 8. University of Bristol (UK)
- University of Edinburgh (UK)
- 10. University of Liverpool (UK)
- 11. University of Oxford (UK)
- 12. University of Sheffield (UK)
- 13. Black Hill State University (US)
 - R. Mannino

- 15. Brookhaven National Lab (US)
- 16. Brown University (US)
- 17. Fermi National Accelerator Lab (US)
- 18. Lawrence Berkeley National Lab (US)
- 19. Lawrence Livermore National Lab (US)
- 20. Northwestern University (US)
- 21. Pennsylvania State University (US)
- 22. SLAC National Accelerator Lab (US)
- 23. South Dakota School of Mines and Technology (US)
- 24. South Dakota Science and Technology Authority (US) 37. Yale University (US)
- 25. Texas A&M University (US)
- 26. University at Albany (US)
- University of Wisconsin Madison

- 27. University of Alabama (US)
- 28. University of California, Berkeley (US)
- 29. University of California, Davis (US)
- 30. University of California, Santa Barbara (US)
- 31. University of Maryland (US)
- University of Massachusetts (US)
- 33. University of Michigan (US)
- 34. University of Rochester (US)
- 35. University of South Dakota (US)
- 36. University of Wisconsin Madison (US)
- - CPAD 2019

Extra slides

Drift and reverse field region

Electron extraction region

Gate-Liquid gap = 5 mm