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LZ detector
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‣ Search for WIMP dark 
matter candidate


‣ 4850-ft underground at 
Sanford Lab
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LZ TPC
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LZ grids
Electric fields 
established by 4 
woven SS mesh grids
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⌀ 1.456 m

Cathode

Bottom grid

Wire 
pitch 
(mm)

Wire 
diameter 

(μm)

Trans-
parency 

(%)

Voltage 
(kV)

Anode 2.5 100 92 5.75

Gate 5 75 97 -5.75

Cathode 5 100 96 -50 / 
-100

Bottom 5 75 97 -1.5

Anode

Gate
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Grid production: weave

‣ Commercially available wire mesh does not come in the LZ grid 
diameter


‣ Challenges: Maintain wire spacing & tension


‣ Video of weaving process 
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Loom

Installing warp wire 
through the heddles

Weights set wire tensions

https://www.youtube.com/watch?v=yNycDcMQkss&feature=youtu.be
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Grid production: glue
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Apply epoxy along engraved ring

Install top ring to secure wire mesh

Glue robot 
deposits 

epoxy on x-y 
stage
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Electron emission

‣ Electron emission from wires is problematic:


‣ Impacts low energy dark matter search → Accidental 
coincidence can mimic low energy events & limit S2-only 
search 


‣ Affects detector operability → high DAQ rate from electron 
trains can increase dead time

7

LZ projected 
sensitivity

Events with an “S2” from 
electron emission can 
mimic NR event (red).

LZ simulated data set for a background-only 1000~live day run 
and a 5.6 tonne fiducial mass. ER and NR bands are indicated 
in blue and red, respectively (solid: mean; dashed: 10% and 
90%). The 1σ and 2σ contours for the low-energy 8B and hep 
NR backgrounds, and a 40 GeV/c2 WIMP are shown as shaded 
regions.

S2S2

Field emissionDrifted electrons
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Electron emission mitigation
1. Dust removal: Construct grids in a 

cleanroom & remove dust


2. Passivation: Changes chemical 
composition of the oxide layer & increases 
the Cr:Fe ratio.
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Tomás, A., et al. "Study and mitigation of spurious electron emission from cathodic wires 
in noble liquid time projection chambers." Astroparticle Physics 103 (2018): 49-61.

Collaborators at ICL measured reduction of electron emission from passivation

Acid-cleanedElectropolishedUntreated
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System test platform at SLAC
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Large  
(1.5-m ⌀ grids)

Small 
(14-cm ⌀ grids)

TPC

Gas only

M. Kapust

2 PMTs

32-PMT 
array

LZ
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Small 2-PMT gas-only detector

‣ Scaled-down extraction region


‣ Quick turnaround


‣ Xenon gas, 3.3 bar
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Anode

Gate

PMT

PMT

14 cm
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Gas test nitric passivation
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35% Nitric acid at room temperature for 30 min

W. Ji PhD, Stanford, 2019.

LZ requirement 
0.019 kV/cm

LZ requirement: 
ΔVA-G = 6.8 kV
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Gas test citric passivation
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LZ requirement: 
0.019 kV/cm

W. Ji PhD, Stanford, 2019.

3-5% Citric acid at 175℉ for 2 hr

LZ requirement: 
ΔVA-G = 6.8 kV
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Small 32-PMT detector
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Designed as TPC 
to test cryogenics, 

circulation, HV 

Test extraction region in 
gas-only mode by 

removing field cage

PMTs

Gate grid installed
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32-PMT gas detector: 
citric passivation results

Plots at ΔVA-G =16 kV
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✴ Before citric passivation, 2 hot spots 
✴ After 130℉ and 140℉ citric passivation, same hot spots remain 
✴ After passivation and 48 hr oxidation, hot spots gone

LZ equivalent ΔVA-G

Systematic errors not shown
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System test: Large gas-only detector
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LZ-scale grids

Reflective MgF2 coated Al 
detector surfaces

32-PMT array
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Emission from dust

Results from passivation of a prototype grid are being analyzed.
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LZ passivation & grid cleaning
‣ Gate grid passivated in 3-5% 

citric acid.


‣ Cathodic and in the electron 
extraction region


‣ Each grid was spray washed 
with DI water and UV-inspected 
for dust before assembly.
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HV in future experiments

‣ HV issues affect many noble liquid detectors.


‣ Fermilab’s 2013 HV in Noble Liquids workshop


‣ Future larger-scale detectors affected by HV issues. 


‣ Scaling up can increase likelihood of dust or surface defects on 
electrodes.


‣ Techniques to mitigate electron emission may become 
increasingly important.

18
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Conclusions
• SLAC R&D System Test studied passivation as a treatment for 

electron emission reduction.


• Promising results observed in many prototype grids


• Paper in preparation now. 

19
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Thank you
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Extra slides

21
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32-PMT TPC nitric & 
citric passivation

Plots at dV = 12.5 kV
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✴ Nitric, dirty, before spark
✴ Ntric, dirty, after spark
✴ Citric, clean

LZ equivalent field at 11.5 kV
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Drift and reverse field region
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Grid Voltage (kV) Surface field (kV/
cm)

Cathode -50

-100

-30.1

-61.4

Bottom -1.5 -33.8

-68.6

-0.30 kV/cm 
-0.65 kV/cm

3.5 kV/cm 
7.1 kV/cm
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Electron extraction region

‣ Liquid-Anode gap = 8 mm


‣ Gate-Liquid gap = 5 mm
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Grid Voltage 
(kV)

Surface 
field 

(kV/cm)

Anode 5.75 46.2

Gate -5.75 -51.8

-48.4

z (
cm

)

Electric field (kV/cm
)

r (cm)

Anode

Gate

-10.2 kV/cm
-5.2 kV/cm

1.44 kV/cm

Cathode @ -50 kV 
Cathode @ -100 kV


