Irigger, DAQ and **Machine Learning CPAD 2019**

Dec 10, 2019

Verena Martinez Outschoorn and Isobel Ojalvo

DAQ Concepts Edge MI

Train & Talk by R. Herbst Test Data Sets Weight & Caffe/Tensorflow train and Laver Definition test software **Bias Values** CNN Config Synthesis / Place & Route **FPGA** Record (VHDL)

Framework to provide a configurable VHDL based **inference engine**

- Layer Types supported: Convolution, Pool & Full

Developed as a proof of concept but applicable for many HEP experiments

developed for Linac Coherent Light Source II

DAQ Concepts Edge ML

Typical NN operations:

Device# of DSPsKintex-7 325T840Virtex-7 690T3600Kintex UltraScale KU1155500Virtex UltraScale+ VU9P6800

+ DNN

- Including support for large layers
- Binary and Ternary DNN
 - Low precision (1 or 2 bit) weights performance
 - Implemented in LUTs

- Basic DSP48E1 Slice functionality
 - Conv1D and Conv2D (small)
 - Large Convs and Binary/Ternary coming soon
 - Other features
 - Batch normalization
 - Various activation functions
 - Tools for comparing C and RTL simulation results 3

Talk by S. Jindariani

20.

Machine Learning based algorithm for reconstructing prompt and displaced muons at Level-1 in CMS detector

At CMS L1 muon transverse momentum assignment has used ML for inference since LHC Run-1

- Traditionally Used LUTs
- NN Inference also should be possible!
 - Trade off in FPGA resource usage

For Phase-2 the EMTF algorithms will evolve to incorporate new detectors, pile up, maintain efficiency, also incorporate displaced Muon ID

HLS estimates

Displaced EMTF++: NN performance

== Utilization Estimates						
* Summary: +	++	+	+	+	+	
Name	BRAM_18K	DSP48E	FF	LUT	URAM	
IDSP Expression FIFO Instance Memory Multiplexer Register	- - 39 - -	- - 2420 - - -	- 0 - 69109 - 4280	- 6 - 90580 - 1404 32	-	
Total	39	2420	73389	92022	61	
Available	4320	6840	2364480	1182240	960	
Utilization (%)	~0	35	3	7	θ +	

Talk by J. F. Low

APd board being developed

Looking into the Phase-2 APd board ^[3] with Virtex US+ VU9P FPGA, which has 3X more LUT & FF, and 2X more DSP.

NN should comfortably fit in the VU9P (DSP usage is 35%)

<mark>32 clk @ 333 MHz ≈ </mark>100 ns latency

σ

┯┥

0

Ñ

Ο

Detect New Physics with Deep Learning

ReLU

Talk by Z. Wu

201 10 Dec CPAD Trigger/DAQ/MI

σ

Example AE Model

- Train with simulated ZeroBias event at 200 pileup
- Use simulated Puppi Jet/MET/MHT inputs (18 inputs) with preprocessing
- Activation function: ReLU
- Loss function: L1Loss
- $\ell(x,y) = L = \{l_1, \dots, l_N\}^{ op}, \quad l_n = |x_n y_n|,$
- Training validation ratio: 0.8
- Number of epochs: 100-200 epochs
- Number of layers: 8 layers
- Model is designed with simplicity for firmware implementation and ٠ resource/latency requirement

Traditional Workflow of Searches

Not to claim a discovery! But to give an idea of what Exotic Signals to integrate into our trigger menus

Auto Encoder Workflow of Searches

Machine Learning-based Trigger for DUNE

Selection/ Classification rame N+2 Module-Level Frame N PA) Event Frame Selection/ Selection/ Classification Classification (per APA)

> 1. Low-level: **CNN-based APA-frame** selection and reweighting

2. Module-level:		
APA-frame		
coincidence		
across module		
and		
over 10 seconds		

Performance and power analysis of CNN s:

Platform	Model	Time	Power	Energy Efficiency
		(s)	(W)	(img/s/W)
ARM C-A53	CNN_s	0.0855	2.871	4.074
FPGA	CNN_s	0.0511	1.110	17.630

*G. Karagiorgi, Y. Jwa, G. di Guglielmo, L. Carloni; DOI: 10.1109/NYSDS.2019.8909784

20

Ο

Accelerated Machine Learning Inference as a Service

Pros: scalable algorithms scalable to the grid/cloud heterogeneity (mixed hardwares)

Pros: less system complexity no network latency

	HCal Reco Network	Resnet-50 (Top tag) Network
CPU (single-thread)	67 inf/s	0.6 - 2 img/s (depends on CPU)
GPUaaS w/TensorRT	333 inf/s (batch 16000)	140 img/s (batch 1) 667 img/s (batch 32)
FPGA (batch 1)	500 inf/s (batch 1)	660 img/s (Brainwave, aaS)

Talk by N. Tran

σ

201

co-processor aaS

co-processor aaS

SONIC Services for Optimized Network Inference on Coprocessors

Overview of Trigger & DAQ Systems

Talk by K. Chen

Energy Frontier

Intensity Frontier

Triggered Readout - CMS

Talk by C. Herwig

Combine detailed Calorimeter

8. Much Information with

track trigger at L1,

p_T>3-4 GeV, Vertices

20

10

S

Px Consortium

orts in ATCA Processor hardware, firmware

processors and mezzanine

n

- **fle** Pooling of efforts in ATCA Processor hardward software development
- Multiple ATCA processors and mezzanine b
 - Modular design philosophy, emphasis on pla solutions with flexibility and expandability
 - Reusable circuit, firmware and software eler

- The APx Consortium
- Pooling of efforts in ATCA Processor hardware, firmwa and software development
- Multiple ATCA processors and mezzanine board types
- Modular design philosophy, emphasis on platform solutions with flexibility and expandability

'x Con

Reusable circuit, firmware and software elements

Sophisticated a gorithms to combine information from all sub detectors at 40MHz Algorithms with fatency of O(100ns) implemented in FPGAs using ATCA hardware Similar strategy pursued by ALLS

Triggered Readout - SBND

Talk by D. Rivera

Trigger decision is critical for LArTPC due to slow drift and high granularity of detectors

Data rates and storage increasingly become an issue

Penn Trigger MTC/A Triggers MTC/A Conf. CRT Triggers Board (PTB) Beam Gate V1730 WR/Timin Threshold Triggers V1730 Readout Triggers Nevis TB I/O V2495 Digital In

— Hardware trigger implemented to decide whether or not the TPC should be read out based on combination of information from several key sources 19

Real-Time Reconstruction - LHCb

Talk by D. Craik

Several interesting physics signals are high rate processes at LHCb

- improved sensitivity by accessing event information early on
- LHCb performs analysis in real time
- Data is buffered before final stage of trigger to derive calibrations & alignment
- Perform reconstruction at bunch-crossing rate with same quality as offline for most objects
- Full raw event is no longer stored, reduce load on offline reconstruction

Already successfully used for several results & plans for extension for next run

CPAD

Real-Time Analysis - CMS

Talk by R. Mommsen

CMS is planning a 40 MHz real-time analysis stream for HL-LHC — Interesting for physics and as diagnostic & monitoring tool

- Gained experience in Run 2, plans for expansion in Run 3
- Successful implementation requires R&D activities on several fronts
 - HW inference engines
 - Stream processing
 - Distributed algorithms (MPI)
- NVRAM latency
- Searchable Feature DB
- Key-value store to assemble and buffer event fragments

<u>1</u>0

Continuous Readout - MicroBooNE

MicroBooNE's Continuous Readout Stream targets seeks to observe supernova signal

- Reads out data continuously and stores it until external trigger is issued

Supernova Early Warning System (SNEWS)

Talk by I. Ponce

Save data for

2 davs

Save data continuously

for several hours

If SNEWS alert

CPAD

Common Challenges and R&D

Experiments with large

Talk by K. Chen

Ethernet Speed 🔵 Speed in Development 🛟 Possible Future Speed

Exciting developments in Trigger DAQ and ML!

2019

Thank You!