Scintillation detector based on InAs quantum dots in a GaAs semiconductor matrix for charged particle tracking

or

can one build a tracker out of scintillating wafers?

S. Oktyabrsky¹, M. Yakimov¹, V. Tokranov¹, K. Dropiewsky¹, A. Minns¹, M. Chattoraj², C. Gingu³, S. Los³, P. Murat³

¹ SUNY Polytechnic Institute, Albany, ² UIUC, ³ Fermilab

Dec 10 2019
Why quantum dots?

if only Mu2e had a low-mass solid state tracker with the TOF resolution of 100 ps ...

- is it possible to build a tracker based on scintillating sensors?
 - collect photons, not drifting electrons - the detector could be much faster
 - not fibers - too long travel, too much material, - but planar ones?

- the scintillator would need to have very high light yield, fast emission

- semiconductor-based scintillators? \(N_{\text{ph}}/\text{MeV} \sim 1 \times 10^6/1.8 \cdot E_{\text{gap}} \sim (2 - 2.5) \times 10^5 \)

- semiconductor quantum dots (QDs) are excellent and fast emitters with \(\tau_{\text{rad}} \sim 1 \text{ns} \)

- have very limited use in HEP, mostly - wavelength shifting
 - making an efficient QD-based scintillator is a problem to solve

- how to make a scintillator out of QD’s, how to read it out

- what happens when you start reading it out - first results

- a concept of tracking sensor with properties quite different from Si sensors

Dec 10 2019

Scintillation detector based on InAs quantum dots in a GaAs semiconductor matrix for charged particle tracking

S.Oktyabrsky, M.Yakimov, V.Tokranov, K.Dropiewsky, A.Minns, M.Chattoraj, C.Gingu, S.Los, P.Murat

SUNY Polytechnic Institute, Albany, UIUC, Fermilab
How to make a dense material with embedded QDs?

- The answer: InAs/GaAs self-assembling quantum dots
 - produced using molecular beam deposition in vacuum (MBE) at several hundred C
- Lattice constants of GaAs and InAs are different
- Minimization of the strain energy leads to stable nm-scale stable InAs islands - QD’s
- Repetitive procedure leads to a multi-layer structure

N.B. InAs/GaAs structures are grown as thin wafers (i.e, 3 inch)
How to make created material transparent to the QD emission?

- Condition satisfied if QD’s are embedded into a semiconductor bulk with $E_{\text{gap}} > E_\gamma$
 - InAs QD’s: $E_\gamma \sim 1.08$ eV, $E_{\text{GaAs}}^{\text{gap}} = 1.4$ eV
- Other material choices possible, however much less investigated
- Very high expectations: light yield $\sim 240,000$ photons/MeV, emission time $\tau \sim 1$ ns
InAs QD / GaAs Sensors

N1801 20um Scintillator: low-mag. STEM

- Sensors produced and characterized by our collaborators from SUNY Poly:
 - High-vacuum MBE, ~ 3” wafers
 - InGaAs photodiode - integrated, processed on a sensor
 - N1801: 50 layers of InAs QD’s separated by 0.4 um of GaAs
N1801 20um Scintillator: QDs, TEM, DF

QD diam ~ 14nm
QD density (4-5) x 10^{10} cm^{-2}
First generation sensors: 20 um thick

- gen1 sensors: 4-5 mm long, \(\sim\) 1 mm wide, 20 um thick - to stop a 5.5 MeV \(\alpha\)-particle
- GaAs index of refraction \(n = 3.4\) => upon reflection from a plane only 2% of light exits
- expect \(\sim\) 90% of the emitted light not to exit => InGaAs photodiodes integrated
- photodiodes - 500\(\mu\)m x (35 -50 - 100) \(\mu\)m x 0.7 \(\mu\)m mesa
First characterization attempt at Fermilab

- amplifiers - 1-3 stages, the total gain up to 600
- use TDS7704B (7GHz, 20Gs) as a trigger+DAQ
- read the oscilloscope over GPIB (up to a few Hz), analyze data offline
schematics can be very misleading

- for scintillators, goal number one - measure the energy resolution
- Am-241 5.5 MeV α-particle range in the air ~ 4 cm
- want the r/a source as small as possible - a 14 smoke detector is the best bet
- the source energy resolution $\sim 3\%$, source-to-source variations at a level of 2%
- uncollimated source with the D=2.2 mm 241Am foil
First data

- observe two very distinct groups of pulses

S. Oktyabrsky, M. Yakimov, V. Tokranov, K. Dropiewsky, A. Minns, M. Chattoraj, C. Gingu, S. Los, P. Murat

SUNY Polytechnic Institute, Albany, UIUC, Fermilab
waveforms from the two groups - strikingly different

- full width of the spike (left) - about 500 ps
 - consistent with being limited by the amplifier bandwidth

- noise - 30 µV, a ~ 1 GHz pick-up seen
 - the digital oscilloscope itself is an important contributor
Overlaying pulses of two types

- charge in the spike consistent with the direct ionization in the 50x500x0.7 um PD
- pulses with spikes - α's going through the PD and stopping in the scintillator
- pulses without spikes - particles hitting the scintillator, but not the PD
- tail consistent with the QD radiative lifetime of $\sim 1-1.5$ ns
charge on PD \sim 1pC - corresponds to collection efficiency \sim 8%

observed energy resolution \sim 10-15% ? - expected much better even for 8% efficiency

the sensors are 20 um thin - could multiple reflections in the sensor play a role ?
Laser scan of the sensor: measure the PD photocurrent

- Laser scan captures the photodiode, defect, and epoxy in the end
- MC: $\lambda_{abs} \sim 2.2$ mm, probability of diffuse reflection - 2.5% - good description
- Geometry is important: 1 mm away from the PD the signal drops by $\sim x10$
- Photodiodes on gen1 detectors are too small for efficient detection
Running with zero external bias on PDs

- a p-n junction has an internal bias of the order of 1V (0.7 for Si)
- external bias of ~ 1V doesn’t add much
- detector - sensor + PD - can operate in a photovoltaic mode, as a solar cell
- zero-bias mode minimizes the dark current, no shot noise
Radiation hardness - irradiation with 1 MeV protons

- emission of InAs QD’s in a 5-layer superlattice reduced by 20% after 10^{13} protons/cm2
- 99% recovery after $5 \cdot 10^{13}$ p/cm2 (~ 90 MRad) and 10 min annealing in N_2 at 600 deg C
- Mu2e-II: expect $\sim 10^{12}$ protons / cm2
Concept of a tracking sensor: GaAs/QD sensor with PD’s as pixels

- have technology producing rad-hard scintillating sensors
- sensors are produced as thin wafers with integrated photodetectors
- detect light, light propagates in all directions - could expect high “fill factor”
- coordinate resolution: 500 um pad $\implies \sigma \sim 150 \mu$ - adequate for many trackers
- material budget: 20 um GaAs \sim 40 um Si \implies 3800 $e^- h$ pairs
 - need to read out signals corresponding to 1000 photons
- measure signals with \sim 200 ps leading edge
 - timing resolution expectations are high
 - detect photons traveling $|\sim 1 \text{ mm}, no \sim 10-15 \text{ ps floor}$
- sensors and photodiodes may not need power
Summary

- Detectors made of semiconductor-based scintillators may have quite interesting applications in HEP.

- QD/GaAs-based sensors are fast, rad-hard, and have integrated photodiodes.

- Signals from α-particles have leading edge shorter than 1 ns.

- Photodiodes can operate without an external bias.

- Further R&D is needed to:
 - Improve light collection efficiency.
 - Develop low noise readout for MIP signals.

- One could think of a charged particle tracking sensors built based on this concept.