
Wall Model PLR Integration

Shaun Alsum

Typical Case

Implemented via RooHistPdf(r, drift, phi) X RooHistPdf(s1, s2)

Wall Model

• Histogram in s1, s2, drift, phi tells you how many events are at
each location in this 4d space.

• Gaussian in r tells you how they are distributed radially.

• rwall depends strongly on drift and phi

• σ depends strongly on s2 (and s2 on s1)

• Therefore the Gaussian is a fully 5d function.

rwall dependence on
drift and phi

Wall Model Correlations

• s1, s2, drift strongly correlated.

• phi weakly correlated to drift

 S1 S2 DT φ

S1

S2

DT

φ

First Pass Implementation

• Try [Hist(s1, s2, drift) X Hist(phi)] x f(r | s1, s2, drift, phi)

• Implemented via RooHistPdf X RooHistPdf x
Conditional(customRooPdf)

• Unfortunately, integration rather slow, event generation
veeeeeery slow.
– Uses numeric integration

– Uses “Accept Reject” event generation

New Implementation

• Create 1 pdf object
– Store a 3d vector array of number of events (s1, s2, drift)

– Store a 1d vector that is a linearized version of this with each bin
added to the previous to form a cumulative distribution functin (cdf)

– Store a 1d vector array of number of events (phi)

– Store the corresponding cdf

– Define a function for the wall position rwall = f(s1, s2, drift, phi)

– Define a function for the std of the distribution rstd = f2(s1, s2, drift,
phi)

– Define the radial pdf as a function of the other observables
• f(r | rwall, rstd) = {Gaus(r | rwall, rstd) if r < rwall – 3, 0 otherwise}/Normalization factor

– Define the inverse cdf of the radial function

Gaussian
CDF

Inverse CDF

Integration

• Radial analytically integrates to 1 for any values of rwall and rstd
so integral is simply Sum(vector(s1, s2, drift)) *
Sum(vector(phi))

• Event

Event Generation

• Generate 3 random numbers form 0 to 1:
– s1S2Drift number
– Phi number
– r number

• Step through s1S2Drift cdf vector until we exceed the s1S2Drift
random number, and randomly draw an event from the
corresponding bin in (s1, s2, drift)

• Step through phi cdf vector until we exceed the phi random
number, then draw an event from the corresponding bin

• Calculate the wall and std for these values of s1, s2, drift, and phi.
• Evaluate the inverse cdf function at these values with the r random

number to obtain a value for r.

• This is at least 10^5 times faster than the default accept reject
method, probably more. And is in fact faster than the 3d HistPdf
generation.

