

Wall Model PLR Integration

Shaun Alsum

Typical Case

$$\mathcal{L}_{M+P} \left((\mu, \vec{k}) \middle| \vec{X} \right) = \text{Pois}(n_{\text{obs}}; n_{\text{exp}}) \cdot \prod_{\vec{x}_i \in \vec{X}} \left[\mu k_{\mathcal{S}} \mathcal{P}_{\mathcal{S}}(\vec{x}_i) + \sum_j k_j \mathcal{P}_{\mathcal{B}j}(\vec{x}_i) \right] \cdot \prod_{k_i \in \vec{k}} \mathcal{P}(k_j)$$

Extended term
Shape term
Profile term

$$\prod_{\vec{x}_i \in \vec{X}} \left[\mu k_{\mathcal{S}} \mathcal{P}_{\mathcal{S}}(s1_i, s2_i, r_i, d_i, \phi_i, t_i) + \sum_j k_j \mathcal{P}_{\mathcal{B}j}(s1_i, s2_i, r_i, d_i, \phi_i, t_i) \right]$$

$$\prod_{\vec{x}_i \in \vec{X}} \left[\mu k_{\mathcal{S}}(c_i) \mathcal{P}_{\mathcal{S}}(s1_i, s2_i \mid c_i) \mathcal{P}_{\mathcal{S}l}(r_i, d_i, \phi_i \mid c_i) + \sum_j k_j(c_i) \mathcal{P}_{\mathcal{B}j}(s1_i, s2_i \mid c_i) \mathcal{P}_{\mathcal{B}j}(r_i, d_i, \phi_i \mid c_i) \right]$$

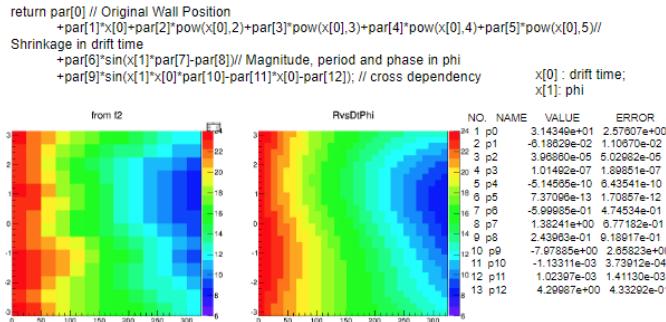
Implemented via `RooHistPdf(r, drift, phi) X RooHistPdf(s1, s2)`

Wall Model

- Histogram in $s1, s2, \text{drift}, \text{phi}$ tells you how many events are at each location in this 4d space.
- Gaussian in r tells you how they are distributed radially.

$$P(r, \phi, \text{Drift}, S2) = \frac{1}{\pi\sqrt{2\sigma}} \exp\left[-\frac{(r - r_{\text{wall}})^2}{2\sigma^2}\right]$$

- r_{wall} depends strongly on drift and phi
- σ depends strongly on $s2$ (and $s2$ on $s1$)
- Therefore the Gaussian is a fully 5d function.



r_{wall} dependence on drift and phi

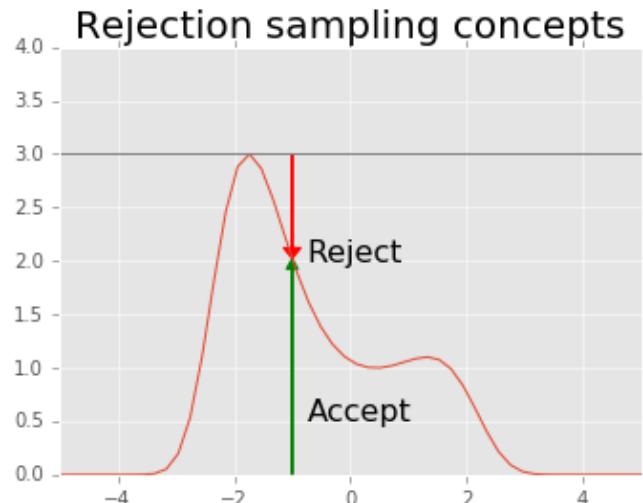
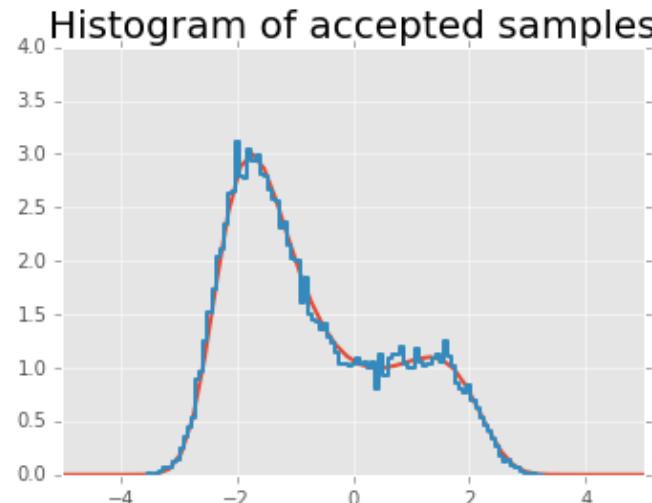
Wall Model Correlations

	S1	S2	DT	φ
S1	Black	Red	Yellow	Green
S2	Red	Black	Red	Green
DT	Yellow	Red	Black	Yellow
φ	Green	Green	Yellow	Black

- s_1, s_2, drift strongly correlated.
- φ weakly correlated to drift

First Pass Implementation

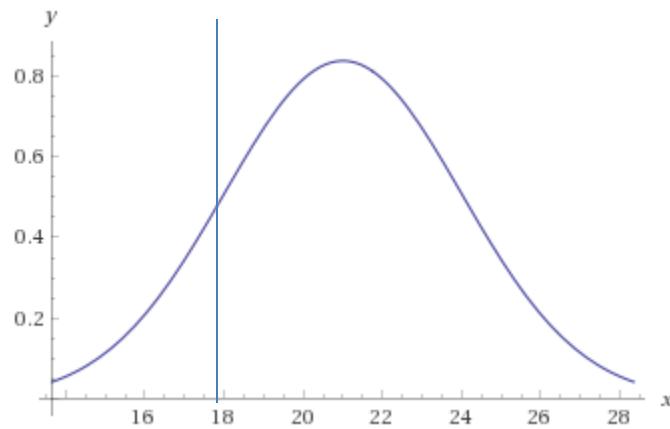
- Try $[\text{Hist}(s1, s2, \text{drift}) \times \text{Hist}(\phi)] \times f(r \mid s1, s2, \text{drift}, \phi)$
- Implemented via `RooHistPdf` \times `RooHistPdf` \times `Conditional(customRooPdf)`
- Unfortunately, integration rather slow, event generation veeeeeeeery slow.
 - Uses numeric integration
 - Uses “Accept Reject” event generation



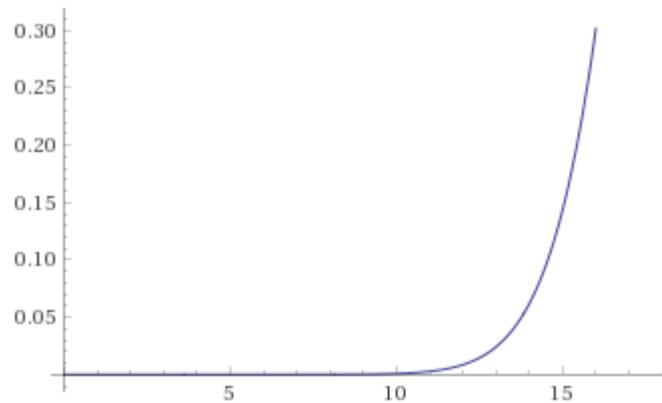
New Implementation

- Create 1 pdf object
 - Store a 3d vector array of number of events (s_1, s_2, drift)
 - Store a 1d vector that is a linearized version of this with each bin added to the previous to form a cumulative distribution function (cdf)
 - Store a 1d vector array of number of events (ϕ)
 - Store the corresponding cdf
 - Define a function for the wall position $r_{\text{wall}} = f(s_1, s_2, \text{drift}, \phi)$
 - Define a function for the std of the distribution $r_{\text{std}} = f_2(s_1, s_2, \text{drift}, \phi)$
 - Define the radial pdf as a function of the other observables
 - $f(r | r_{\text{wall}}, r_{\text{std}}) = \{\text{Gaus}(r | r_{\text{wall}}, r_{\text{std}}) \text{ if } r < r_{\text{wall}} - 3, 0 \text{ otherwise}\} / \text{Normalization factor}$
 - Define the inverse cdf of the radial function

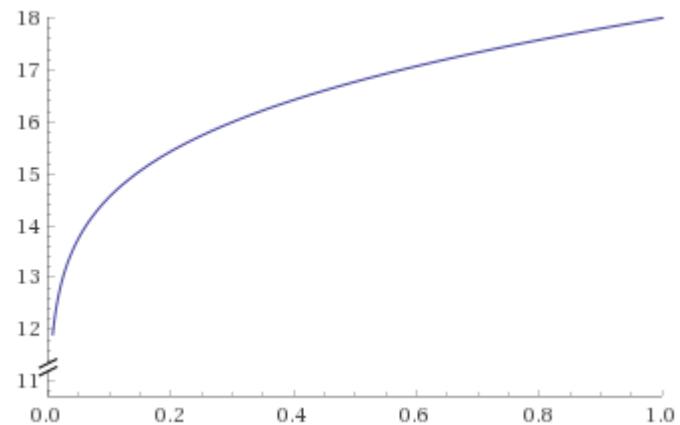
Gaussian



CDF



Inverse CDF



Integration

- Radial analytically integrates to 1 for any values of r_{wall} and r_{std} so integral is simply $\text{Sum}(\text{vector}(s1, s2, \text{drift})) * \text{Sum}(\text{vector}(\phi))$
- Event

Event Generation

- Generate 3 random numbers form 0 to 1:
 - $s1S2Drift$ number
 - Φ number
 - r number
- Step through $s1S2Drift$ cdf vector until we exceed the $s1S2Drift$ random number, and randomly draw an event from the corresponding bin in $(s1, s2, \text{drift})$
- Step through Φ cdf vector until we exceed the Φ random number, then draw an event from the corresponding bin
- Calculate the wall and std for these values of $s1, s2, \text{drift}$, and Φ .
- Evaluate the inverse cdf function at these values with the r random number to obtain a value for r .
- This is at least 10^5 times faster than the default accept reject method, probably more. And is in fact faster than the 3d HistPdf generation.