

Towards Pixel Triggering

Karl Ecklund Rice University

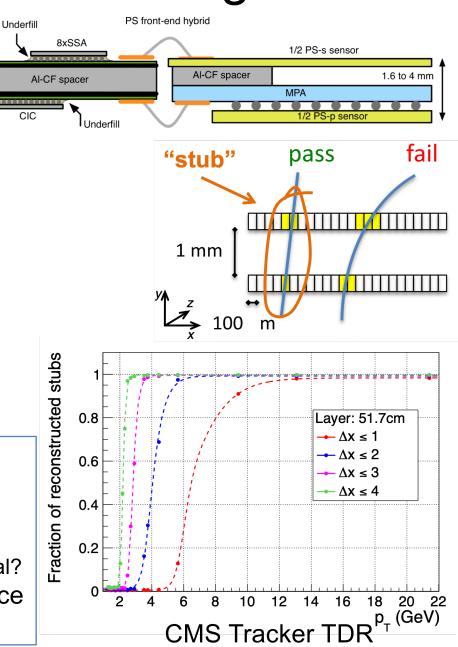
Important Factors

- Possible Use Cases for Pixel Triggering (in typical collider detector geometry, pixels nearest IR)
 - Improved Impact Parameter Resolution
 - Separated Vertex Tagging
 - b/c/tau jet taggers
 - Improved Primary Vertex Reconstruction
 - Improved Vertex Separation for pileup mitigation in multiobject triggers
 - Requires matching pixel tracks to other L1 objects
 - Electron/Photon Discrimination
 - Electrons have pixel hits; photons do not
- Physics needs should drive development paths
 - Expensive in material, power, and complexity for pixel systems that are already very challenging to construct (more on this presently)

Challenges

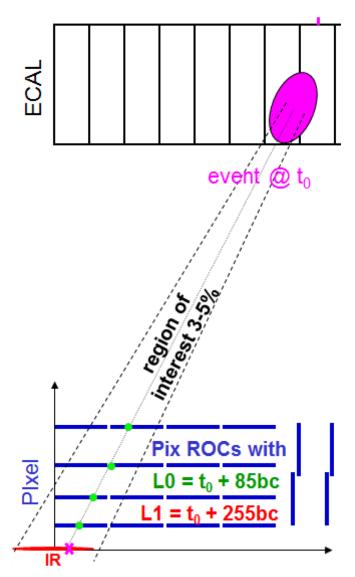
• The challenge

- Making pixel systems triggerable at L1 for future experiments at future machines
- Requires more readout bandwidth
- Why this is difficult
 - Very compact systems, close to the interaction region
 - High radiation environment (HL-LHC: 1 GRad, 2E16 n/cm²)
 - High flux of particles (HL-LHC: 2E9 hits cm⁻²s⁻¹)
 - High data rates
 - System-level and integration issues
 - $_{\circ}$ Higher bandwidth readout \rightarrow higher power
 - $_{\circ}$ Local processing \rightarrow higher power
 - $_{\circ}$ Higher power \rightarrow more cooling & cables / converters
 - Added on-detector functions require more inactive material → system optimization must include impacts of "services"


Bandwidth Requirements

- Present LHC systems trigger at ~100 kHz
 - CMS: 1.8m², 123×10⁶ pixels, 1200*400 Mbps links
 - Already using on-ASIC zero suppression
- HL-LHC Systems Trigger at ~1 MHz
 - CMS: 5m², 2×10⁹ pixels, ~1400*10 Gbps links
 - Bandwidth driven by
 - ∘ Higher flux/instantaneous Luminosity (2E34 \rightarrow 5E34 cm²s⁻¹)
 - $_{\circ}$ Higher trigger rate (0.1 → 1 MHz)
 - $_{\circ}~$ More tracking stations (4 layer/12 disk) from larger η coverage
- Consider a System providing info to L1 at 40 MHz
 - Simplistic scaling: 40x more bandwidth needed
 - Reducible in principle with
 - Reduced information sent for L1 decision (macro pixels)
 - On detector processing: e.g. clusterization, layer correlators
 - Region of Interest readout architectures e.g. L0 trigger to Rol
 - Likely need several factors to reach overall goal of 40

Local Processing


- Example of Track Triggering CMS HL-LHC Outer Tracker
 - Already makes use of pixels
 - CMS PS modules have pixels & strips
 - Used in 3 inner layers
 - Local processing in p_T doublet modules
 - CMS Design filters on p_{T} and transmits tracklet stubs to L1 track finder
 - Large data reduction from sending all stubs
 - Still 90% of BW is used to transmit L1 stubs from modules to track finder
 - For this design ~10x more BW needed to implement a triggering tracking detector
- Similar factors maybe possible in future pixel trackers
 - Challenges to corollate among layers
 - Doublet modules?
 - Inter-layer links in sectors optical, electrical?
 - Forming pixel clusters in ASIC may reduce data to send & ease use in L1 trigger

Region of Interest Readout

- Reduce bandwidth by sending trigger info after L0 trigger in limited regions of interest
 - L0 issued by other trigger systems (+latency)
 - Sector based tracking readout for area pointing to L0 objects, e.g. γ/ electron candidate, jet, ...
- Natural granularity in modular pixel systems E.g. HL-LHC CMS IT
 - Φ ~ 12 facets
 - $\eta \sim 20$ for $|\eta| < 4$ N.B. *not* uniform
 - One (η, Φ) region ~ 0.5% of detector
- Defining Rol by (η, Φ) sectors has non-trivial implications for detector layout
 - Better: project L0 objects back onto modules
 - Send L0 by module ID (e.g. via LUTs)
- Advantage disappears if too many objects need pixel info for L1 decision – just read it all out
- Rol definition is a system level design decision

R. Horisberger / W. Smith c. 2010

R&D Areas

- Local Processing
- Rol Architectures

System level issues discussed earlier Additionally some generic R&D on links & ASICs that would enable future triggering pixel systems

- Radiation-hard high-speed low-power links
 - Many HL-LHC systems rely on the 10 Gbps lpGBT and Versatile Link+ projects
 - $_{\odot}~$ Low power gigabit transceiver ASIC 65 nm 1.2 V
 - VL+ Laser diodes adapted from COTS 2.5V with 65 nm ASICs supporting (transimpedance amps & laser drivers)
 - Lasers to 100 MRad & 1E15 had/cm² → HL-LHC lasers not on pixel modules
 - Next generation links for particle physics are needed
 - Higher bandwidth
 - Low power
 - Higher radiation qualification
- Next-generation ASICs for HEP
 - Enable local processing for data reduction
 - More logic density from smaller feature size (RD53 is 65nm)
 - Must qualify transistors for TID and SEU/SET effects
 - Triple Modular Redundancy provides SEU mitigation with more gates

Summary

- The use case(s) for pixel triggering should be carefully considered and motivate system design
 - A pixel tracker system optimized only for track reconstruction performance is not the same as an *triggering* pixel tracker system optimized for physics performance including triggering!
- Pixel systems are squeezed for space, power, cooling, readout bandwidth
- Radiation tolerance of optical links and ASICs are key enabling technologies
- System-level design can be guided from the current (next) generation of tracking detectors
 - Here I refer to the design process not just "scaling it up"
 - Local processing was a keystone for making track trigger readout feasible for CMS HL-LHC OT
 - Rol L0 readout may be an idea worth exploring (again)
 - Other innovations should be explored