
In partnership with:

Tools (e.g. for streaming DAQ, fast ML, automation/self running DAQ,…)

Mia Liu, Nhan Tran, Fermilab + input from many in Fast ML and broader community!
DOE Basic Research Needs Study (Community meeting for TDAQ)
December 3rd, 2019

The dream TDAQ

• Powerful intelligent algorithms
• Sophisticated algorithms

• Training/updating on the fly

• Autonomous, self-calibrating
• Safe with minimal down-time

• Analyze everything, no data loss
• Modular, multiple processing layers

�2

Generic system

�3

TDAQ-1

(reconstruct)
offline

data tier 1

analysis, alert
system, self-

calibration (re-train)

TDAQ-N
(reconstruct)

offline

data tier N

analysis, alert
system, self-

calibration (re-train)

Detector,
Accelerator

Specific systems

�4

Specific systems

�5

Real-time controls, trigger, alerts

Fixed latency/clock to transient/streaming events

Wide range of detector scales and timelines (1ns to 1s)

MACHINE LEARNING IN THE HARDWARE TRIGGER 1

Javier Duarte I hls4ml 6

CMS Trigger
High-Level
TriggerL1 Trigger

1 kHz
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)

• 99.75% rejected

• decision in ~4 μs

• High-Level Trigger (software)

• 99% rejected

• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline

Offl
ine

1 ns 1 us 1 s1 ms
Compute Latency

2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.

�����������
�����

���
��
���������!�
	"������

#

���������-���
�-��
����-�-����

�����	�-���-��

��
��
�������

��
��
��� ���-��

����������-���/�����

��������-��!
���
���-��

�����

���
���
��-�����
��-����
����!
���!��/���!

hls 4 ml

hls4ml

HLS 4 ML

Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:

– 4 –

> 5000 parameter
fully connected

network in 100 ns!

Latency landscape

�6

Massive data rates, on-detector low-latency processing
Extreme environments: low-power, cryogenic, high-radiation

~1 PB/DAY

~1 PB/S

Computing infrastructure and hardware

5

HARDWARE ALTERNATIVES �11

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

}
Advances in

heterogeneous computing
driven by

machine learning and big
data explosion

Computing hardware  
and infrastructure

Computing challenges: Need to investigate in how to
integrate heterogeneous computing platforms

CMS ex
am

ple

1ns 1μs 1ms 1s
Latency

DUNE DAQ?

LSST transient detection?

RF signal processing?

[https://arxiv.org/abs/1804.06913], [fastmachinelearning.org/hls4ml]

ML in the hardware trigger
• All FPGA design

• Flexible: many algorithm kernels for processing different
architectures

• Application and adoption growing across the LHC and beyond!

• Growing interest with many on-going developments
• CNNs, Graphs, RNNs, auto-encoders, binary/ternary
• Alternate HLS (Intel, Mentor, Cadence)
• Co-processors, multi-FPGA
• Intelligent ASICs

• See Phil’s talk

On-detector sophisticated algorithms

 7

> 5000 parameter
fully connected

network in 100 ns

https://arxiv.org/abs/1804.06913
http://fastmachinelearning.org/hls4ml

hls4…ml…4asic?

�8

Hardware acceleration with an emphasis on co-design and fast turnaround time

Encoder

DecoderHigh
speed
drivers

Reprogrammable
weights

Original
data

Reconstructed dataCompressed data
- Efficient bandwidth usage
- Reduced power consumption (data transfer) reconfigurable

Rate: 40MHz

First project: Autoencoder with MNIST benchmark (28 x 28 x 8-bits @ 40 MHz)

Enable edge compute : e.g. data compression
Programmable and Reconfigurable: reprogrammable weights
Hardware – Software codesign: algorithm-driven architectural approach
Optimized Mixed signal / Analog techniques: Low power and low latency
for extreme environment (ionizing radiation, deep cryogenic)

First tests of 1-layer design
Latency: 9ns

Power (FPGA, 28nm) ~ 2.5 W
Power (ASIC, 65nm) ~ 40 mW

Area = 0.5mm x 0.5mm

FNAL, NW, Columbia, work-in-progress

Off detector: heterogeneous computing

�9

HARDWARE ALTERNATIVES �11

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Advances in
heterogeneous computing

driven by

machine learning

• Opportunities for deploying
accelerated heterogeneous
compute for real-time
analysis

• How best to integrate into a
given TDAQ workflow

• ML/not ML

• Service or direct connect

• GPU, FPGA, ASIC

• Proof-of-concept for ML with FPGAs as a
service, https://arxiv.org/abs/1904.08986

https://arxiv.org/abs/1904.08986

Autonomous, self-calibrating detector

�10

Hardware:

FPGA/Sytem-on-Chip

• Insitu-Training:

FPGA/Sytem-on-

Chip

• Off-line training:
CPU/
heterogeneous
computing• Anomaly detection and weight

updating

• Transient detection algorithms

• Reinforcement learning

• Neuromorphic algorithms

(spiking)

fast-streaming

Autonomous, self-tuning accelerator

�11

Hardware:

FPGA/Sytem-on-Chip

• Insitu-Training:

FPGA/Sytem-on-

Chip

• Off-line training:
CPU/
heterogeneous
computing• Anomaly detection and weight

updating

• Transient detection algorithms

• Reinforcement learning

• Neuromorphic algorithms

(spiking)

fast-streaming

For accelerator applications,
constant tuning/feedback loop required

Tools for dream
• Powerful intelligent algorithms

• FPGAs designed for ML and vice versa
• Opportunities for heterogeneous hardware (e.g. Versal)
• Push up to the frontest end (ML in ASIC, reconfigurable weights)
• New types of algorithms beyond classification & regression

• Autonomous, self-calibrating
• Automation for (a) when conditions have changed (b) what actions to take
• Fast DAQ paths with deep buffers for monitoring individual channels, how to deal with different time scales?
• Training and recalibration “offline-system” (GPU…) or small-scale in situ (ARM processor, in FPGA)

• Analyze everything, no data loss
• Modular, portable, multiple processing layers
• Streaming fast analysis - accessible programming paradigms; SoC R&D
• Data storage - Affordable, new/different storage technologies for persistent (parked) datasets

�12

Electronics hardware  
and infrastructure

New algorithms

Systems designed for
operations and control

�13

Extra

