ML Acceleration with Heterogenous computing for big data Physics Philip Harris(MIT)

Fermilab

Burt Holzman Sergo Jindariani Benjamin Kreis Mia Liu Kevin Pedro Nhan Tran Aristeidis Tsaris

Naif Tarafadar Paul Chow Massachusetts Institute of Technology Jeff Krupa Dylan Rankin Sang Eon Park

WASHINGTON

Scott Hauck Shih-Chieh Hsu Matthew Trahms Dustin Werran

C UNIVERSITY OF ILLINOIS AT CHICAGO

Zhenbin Wu

Mark Neubauer Markus Crisziani Microsoft

Suffian Khan Brandon Perez Colin Versteeg Ted W. Way Andrew Putnam Kalin Ovatcharov

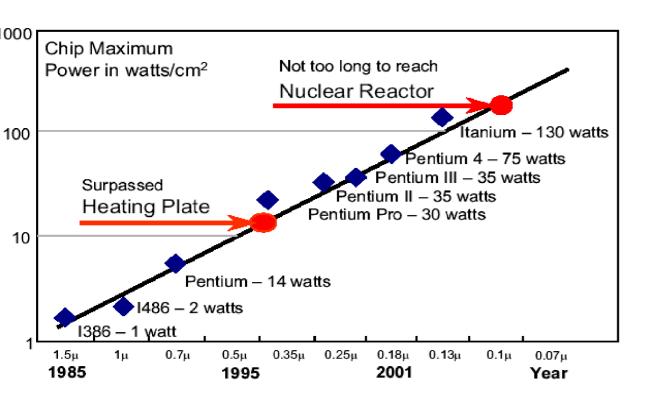
Vladimir Loncar Jennifer Ngadiuba Maurizio Pierini

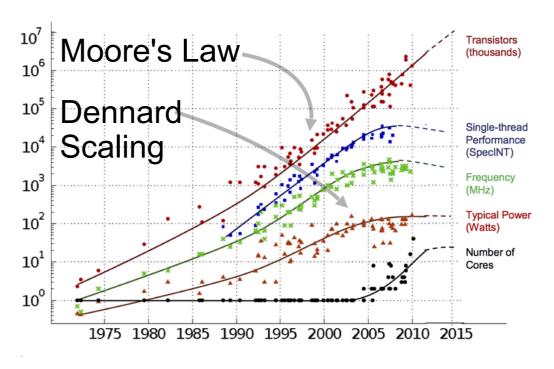
COLUMBIA UNIVERSITY

Giusppe Di Guglielmo

Beyond the Multicore Era

- Following the breakdown off Dennard scaling
 - Companies focused on multicore development
 - With many cores power limitations come up again



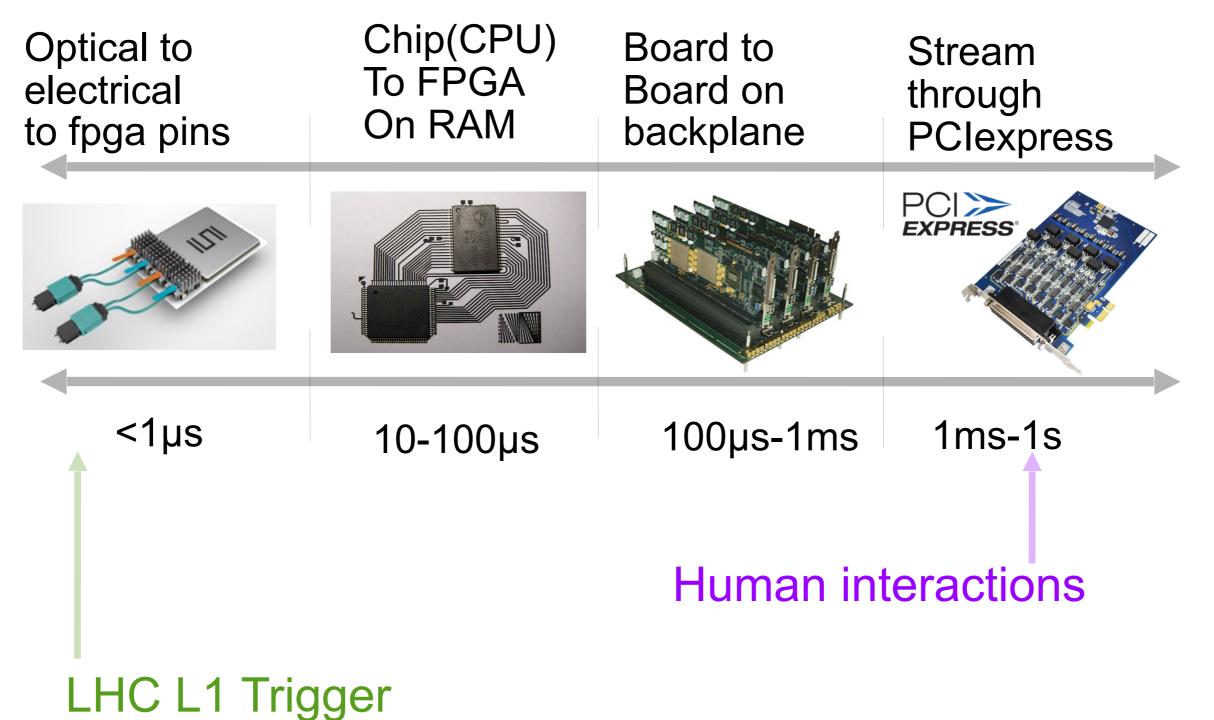


Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

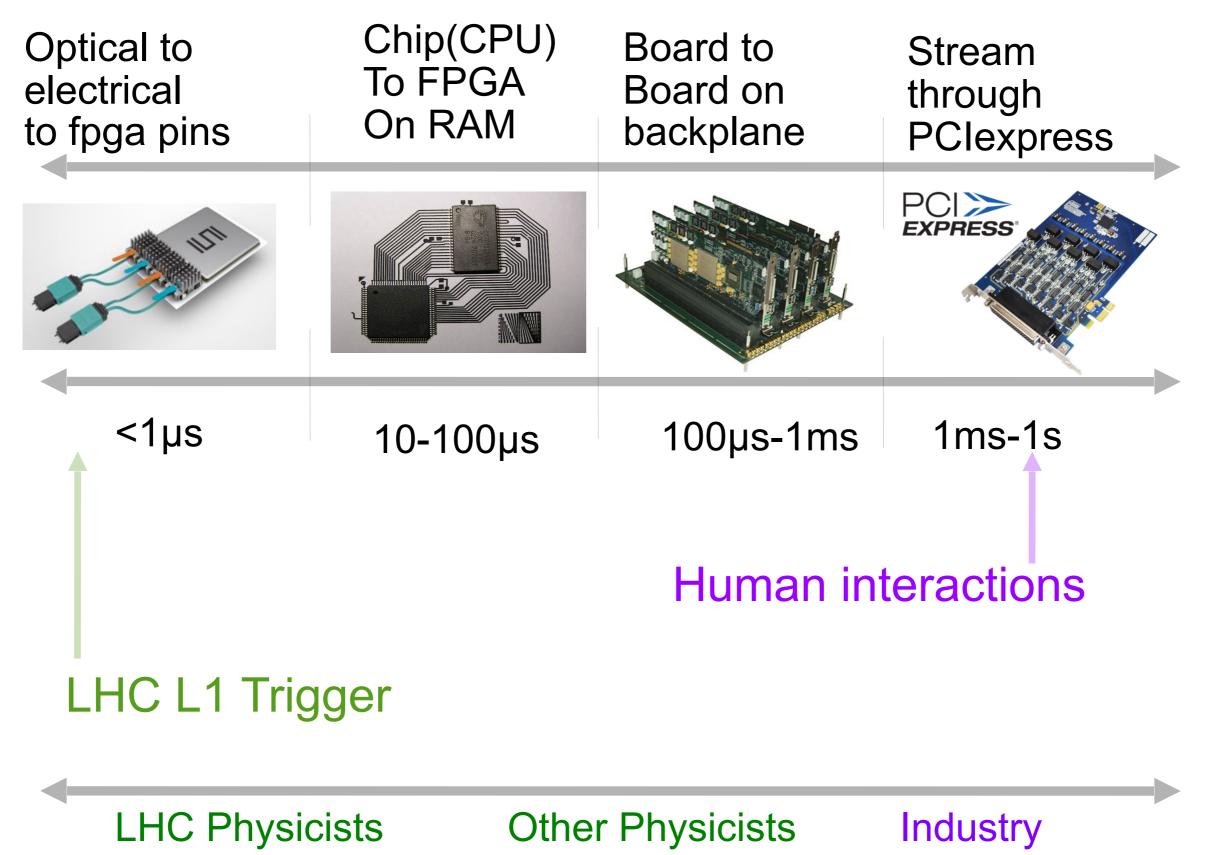
What becomes of the Post Multicore Era Processors become specialized

https://www.cc.gatech.edu/~hadi/doc/paper/2011-isca-dark_silicon.pdf

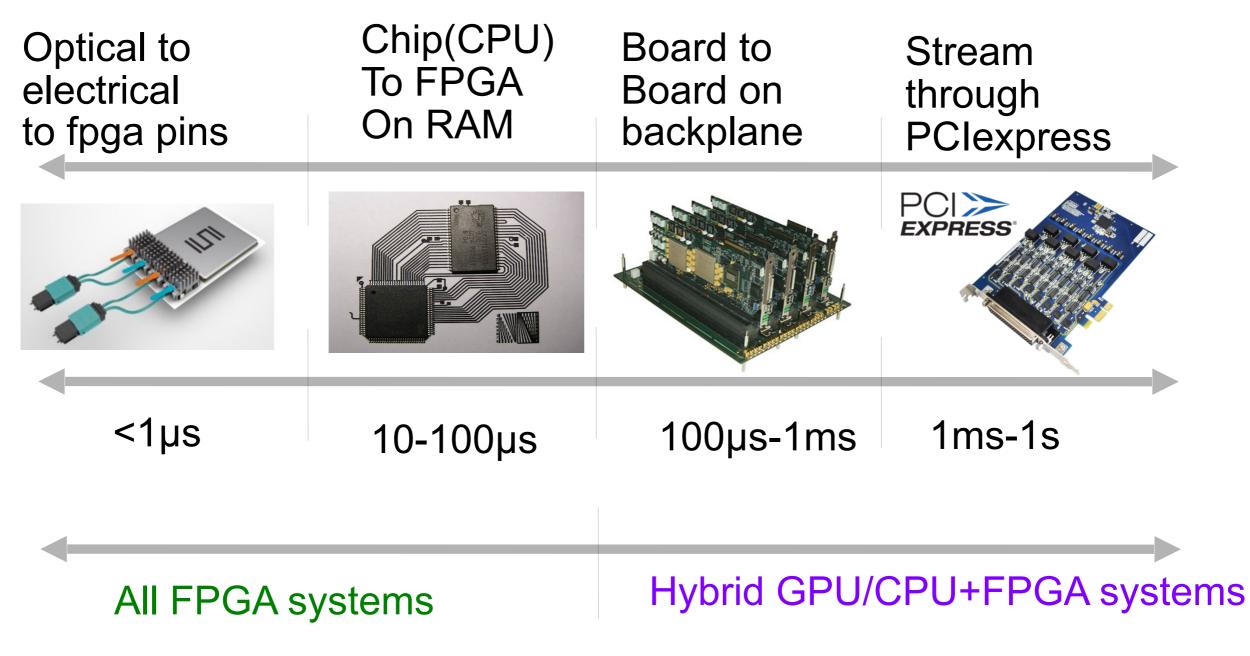
Understanding Time Scales



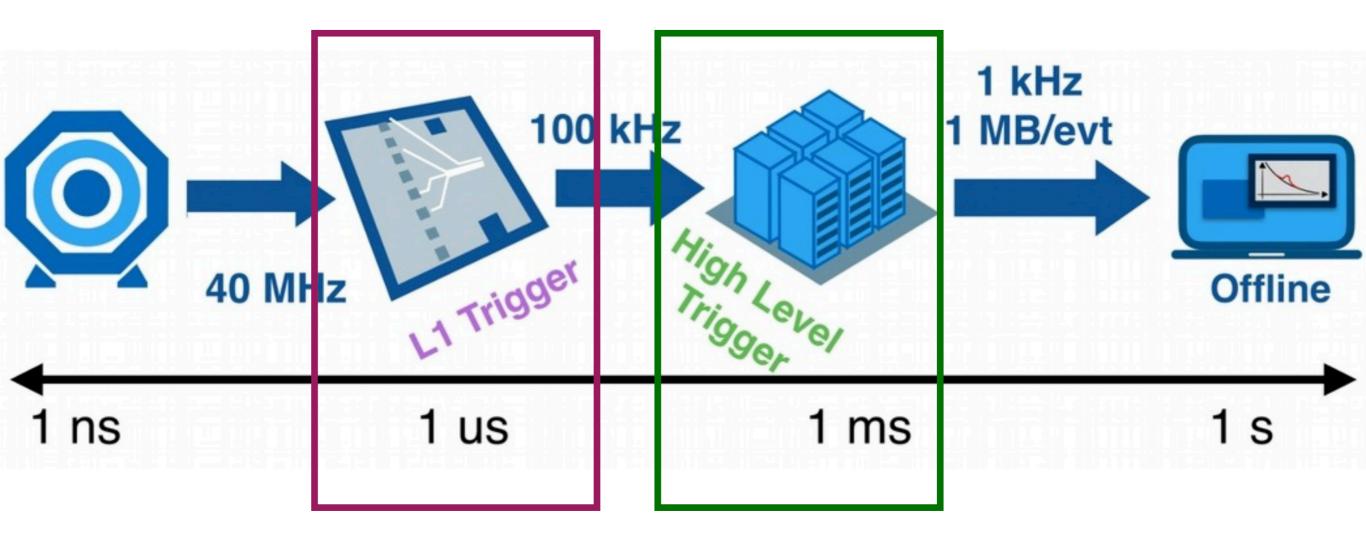
Understanding Time Scales



Understanding Time Scales



How do we process data?

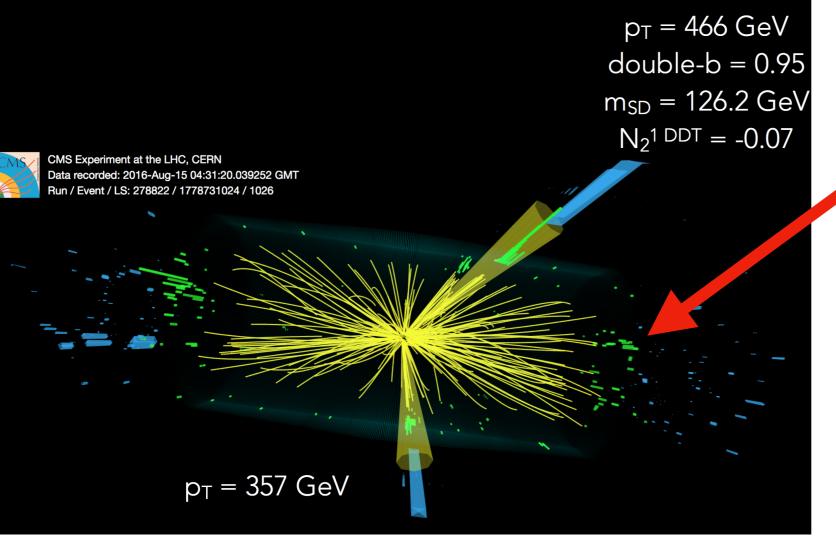


Conventional computing Industry is building a lot of tools Our input can drive innovation

Custom ASIC+FPGA System ML needs to be done in <1µs Requires a rethink of ML processing

Hidden gems?

There is a plethora of physics that we throw out



Higgs boson right on the cusp of being thrown out

The dream

- At the moment:
 - We only get a full data of one in 100,000 collisions
 - There is interesting physics that we have to throw away

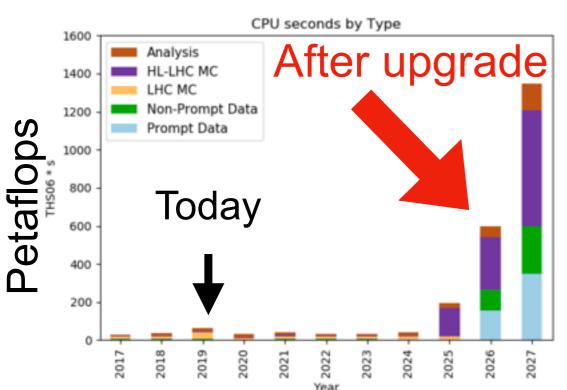
- We would like to analyze every collision at the LHC
 - To deal with this we need to increase our throughput
 - Ultimately this means going to 100s of Tb/s

The Challenge

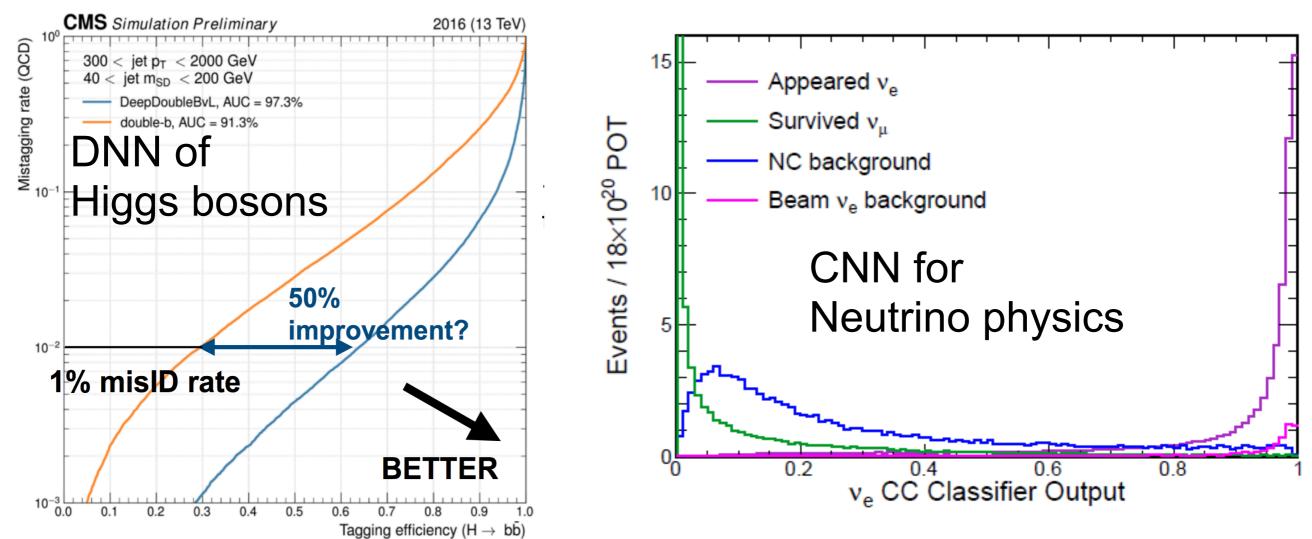
- We are upgrading the system
 - Our event size will be 10 times larger

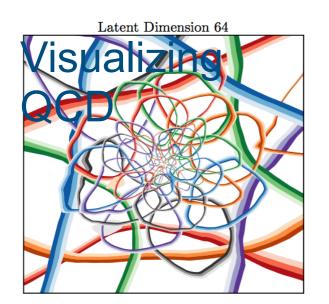
End of Dennard Scaling is about to hit us hard

- And we have to take data at 5x the rate
 - Need this just to preserve our existing physics
- 10s of years of processing without modifying system



Deep Learning in HEP



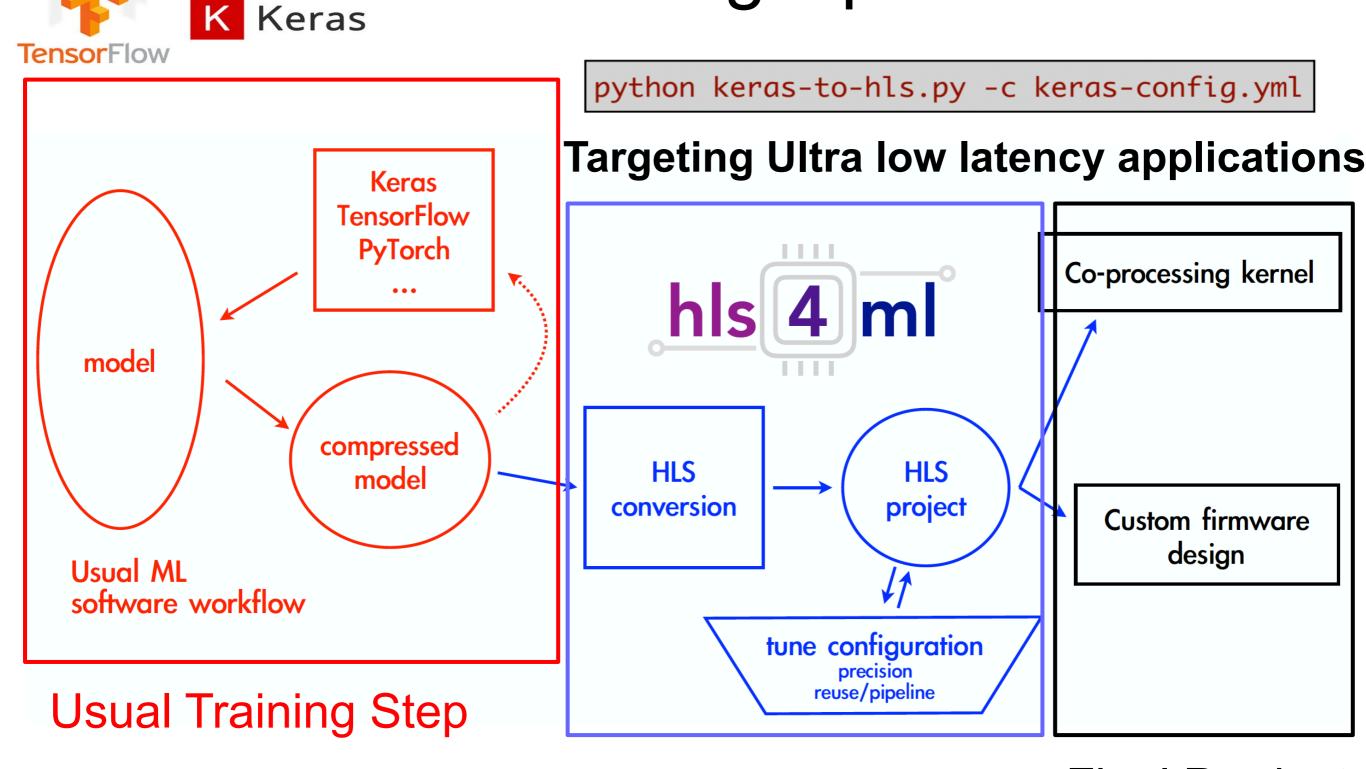


With rise of deep learning we are quickly coming up with new ways to interpret the data and improve our Physics data analysis

Deep Learning L1 Trigger

- Have at MOST 1 μ s to run an algorithm
 - We aim for algorithms that are in the 100ns range
- Want to make the fastest possible algorithm
- Want to have the smallest initiation interval
 - A collision is every 25ns (40 MHz)
 - We apply algorithms to multiple subsets of total event
 - That means we need applications in every X < 25ns

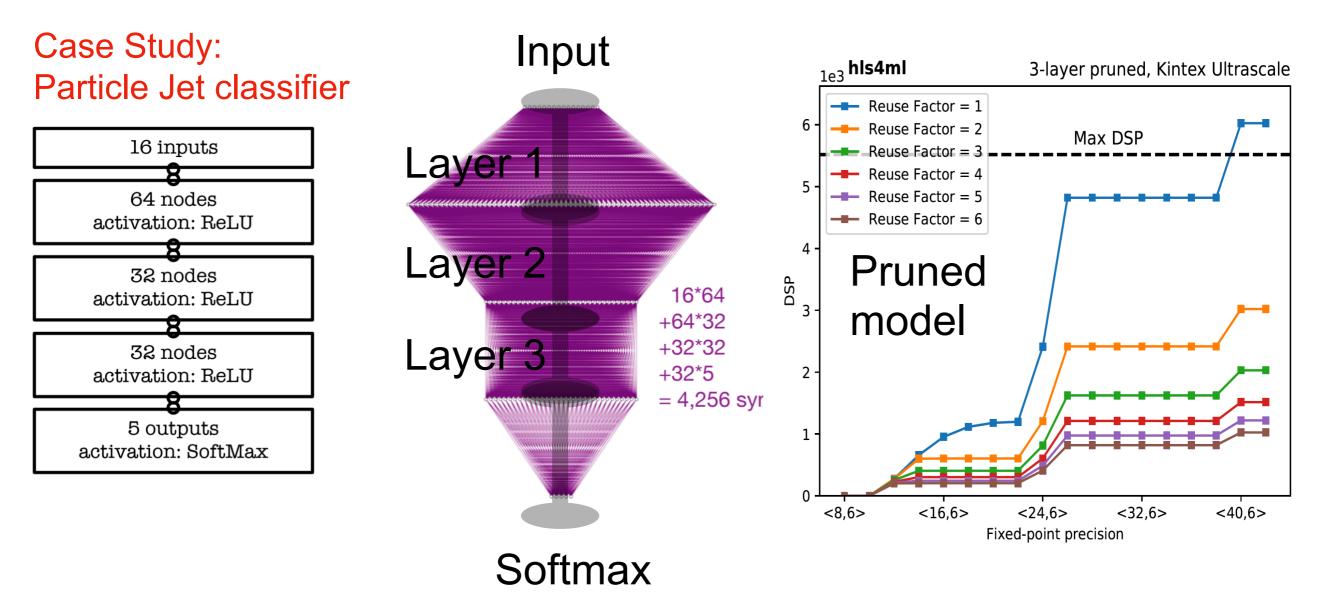
Summing Up the Data flow



PYTÖRCH

Support in HLS4ML for HLS tuning Final Product MLPs,CNNs,Binary/Tenary NNs,BDTs,Graph NNs,LSTM/GRUs

What can we run?



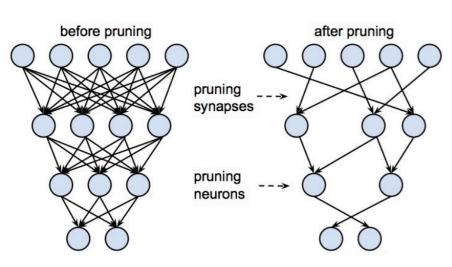
75ns latency new input every 5ns fits in a a conventional FPGA (VU9P)

Design at the L1

Focus on 3 ways to cut down resources

Is our algorithm overly complex?

Algorithmic Compression



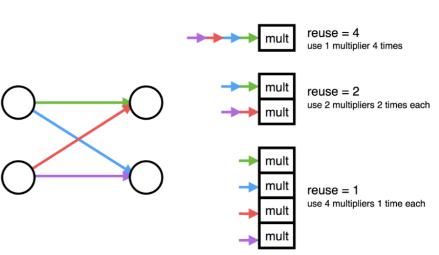
Are we too precise?

Quantization

ap_fixed<width,integer>
0101.1011101010
integer fractional
width

Does it really need to be this fast?

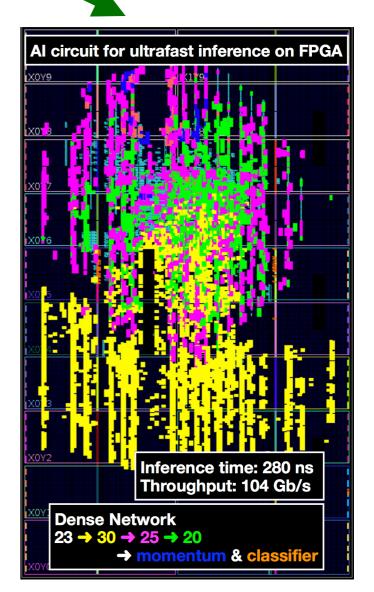
Reuse Factor



Current Status

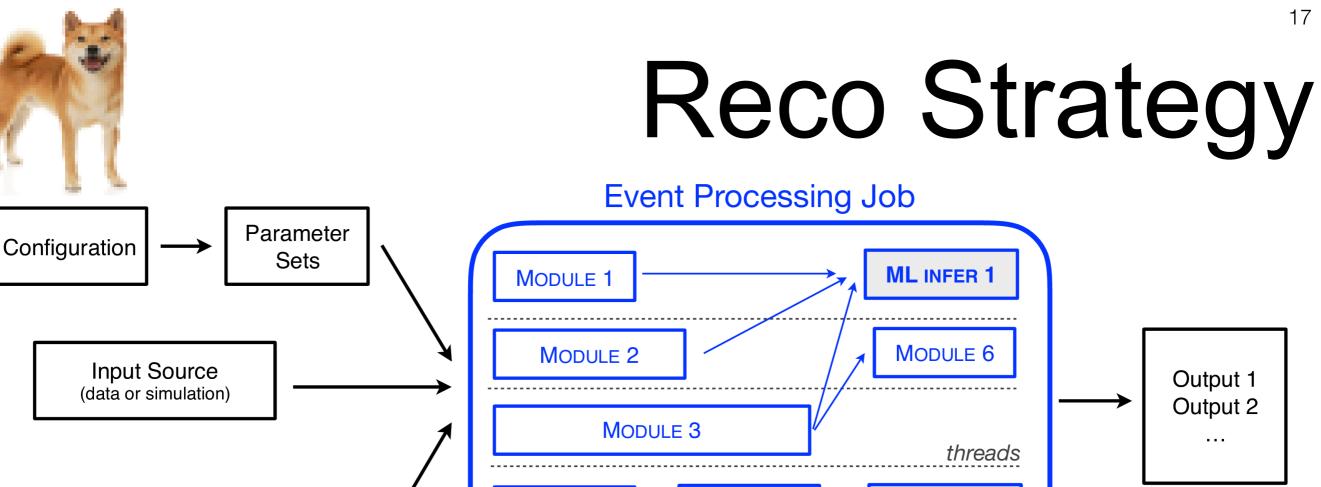
- Tool: quickly adopted for a number of applications
 - Muon p_T reconstruction with an NN
 - Autoencoder at Level 1
 - NN based Tau lepton identification
 - Jet substructure at L1
 - •
- Tutorials exsit using AWS f1 FPGA cluster

Targeting LHC Run 3



Deep Learning in HLT

- Previous systems have been CPU only
 - New systems will likely be heterogeneous (FPGAs/GPUs...)
 - Some parts of reco can still benefit from use of CPU
- With timescales at the level of milliseconds
 - Utilize industry tools to use heterogeneous systems
 - Can consider GPUs for parallelized processing
- ML on the millisecond timescale used by many industries
 - ML inference engines (ML-as-a-service) MLaas



MODULE 5

ML INFER 2

Complicated scheme of modules

Event Setup

Database

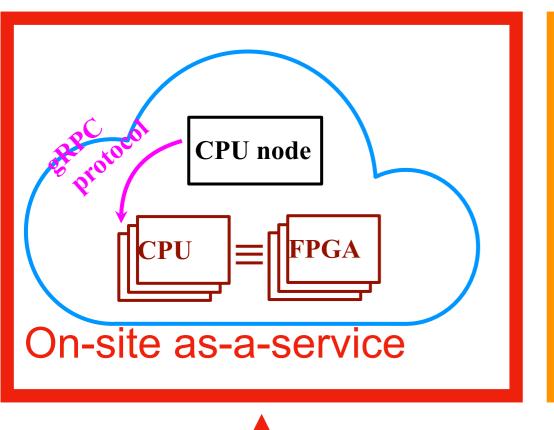
- While some parts are parallelizeable
- Collision level analysis built in by construction (Batch 1)

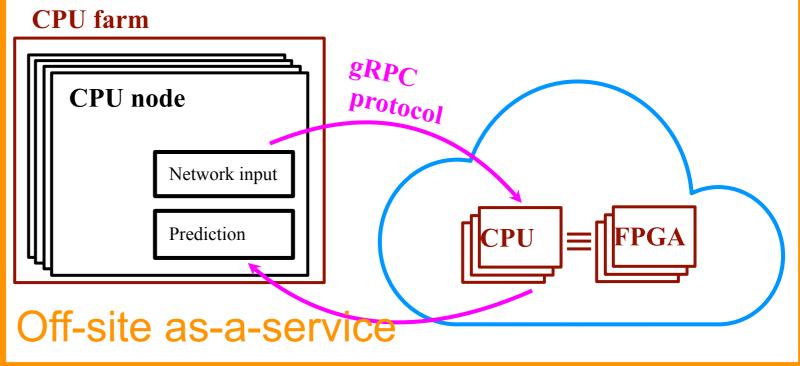
MODULE 4

Service Options

Low latency Triggering

Larger latency but still large throughput (future slides)

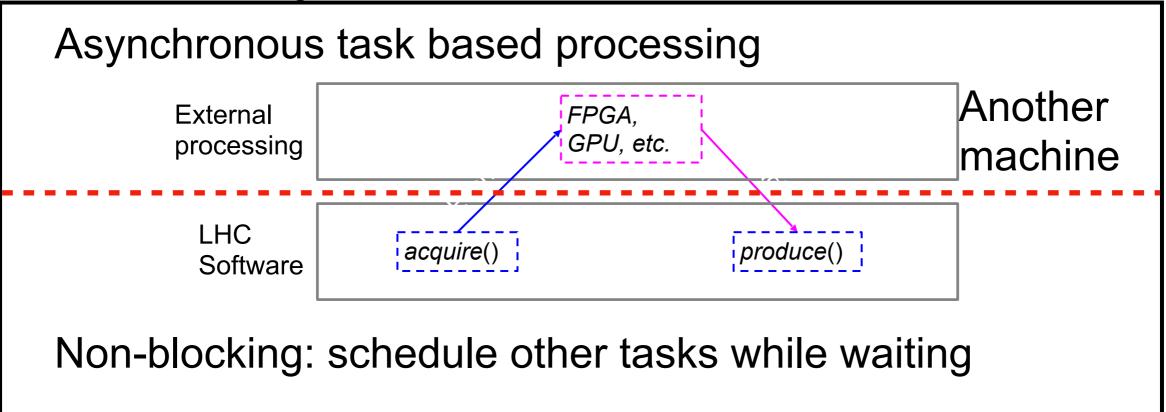




When latency not critical element : can go off-site to the cloud For timescales in <100ms, this is not an option

Offloading to Hardware

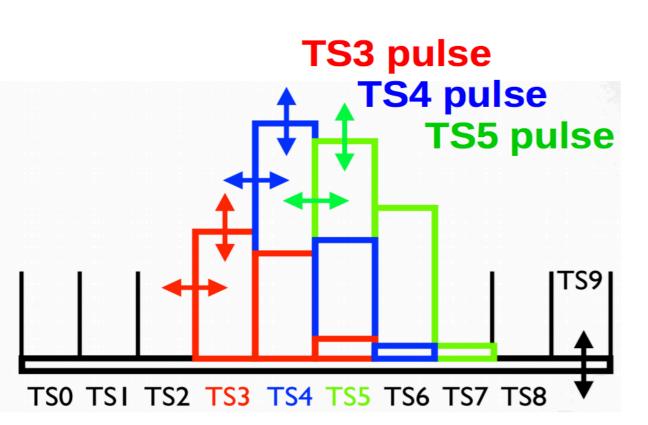
• To run these algorithms within our software



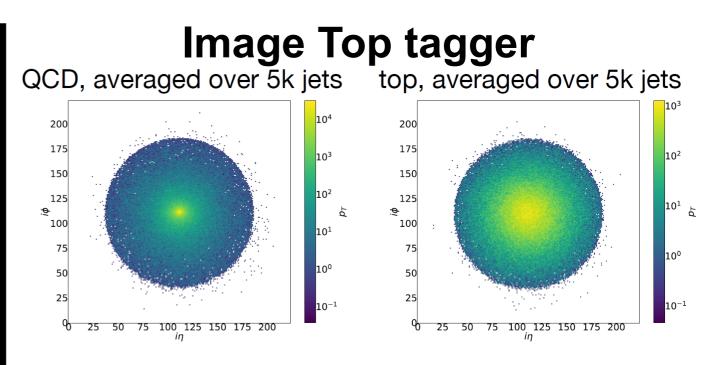
- Our Strategy
 - Pick benchmark ML examples+put them on FPGAs/GPUs
 - Observe what level speed up we get over CPUs and how

Examples

Hcal Reco



Energy reconstruction of Hadronic showers Simple energy regression 16000 times per collision Batch N per particles



Top quark identification Here we use Resnet50 as benchmark

Complicated identification Many inputs 1-2 times per collision

Batch 1 per Event

Performance

Hcal Reco

Algo	Per Event
Old CPU	50ms
NN CPU	15ms
NN GPU(1080 Ti)	3ms
NN FPGA	2ms
+Off Machine	+10ms
+Offsite	+40ms
throughput+offsite	3ms

Image Top tagger

Algo	Per Event	
CPU	1.75s	
GPU Batch 1	7ms	
GPU Batch 32	2ms	
FPGA	1.7ms	
+Off Machine	+10ms	
+Offsite	+40ms	
throughput+offsite	1.7ms	

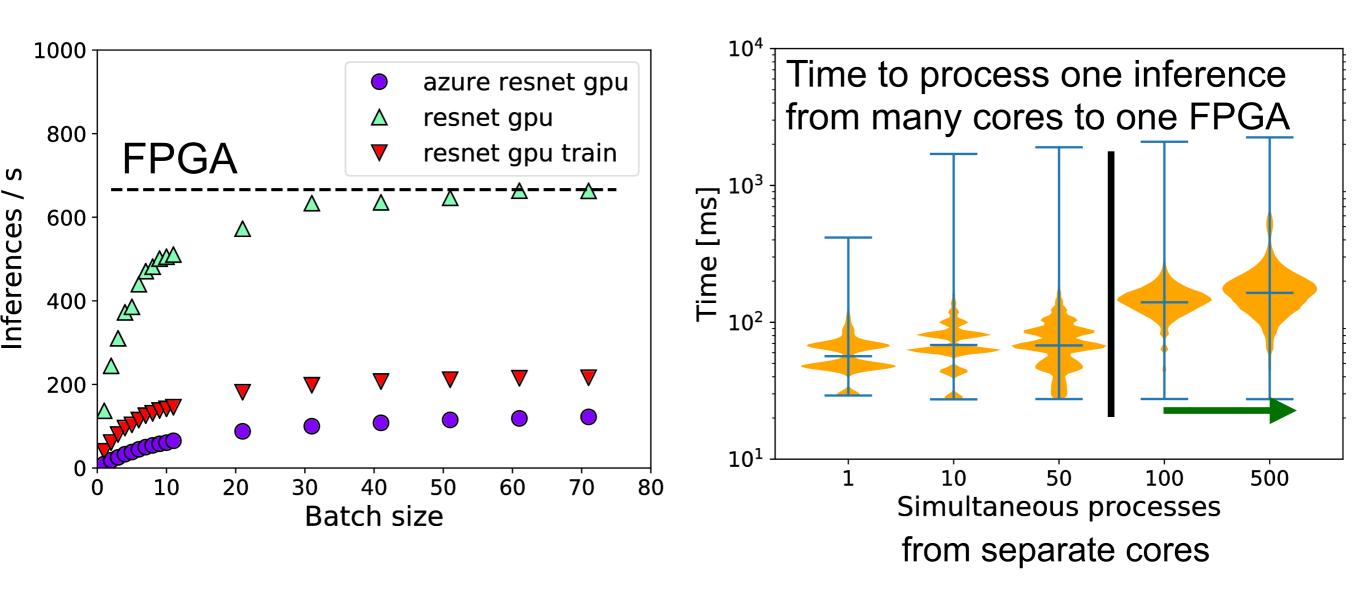
GPU : Use tensorflow+tensorrt FPGA: HLS4ML+SDAccel

GPU : Use tensorflow+tensorrt **FPGA: Microsoft Azure**

Batch 1 per Event

No GPU nor FPGA code needed to implement these optimally! **Batch 16000 per particles**

Processing Technology

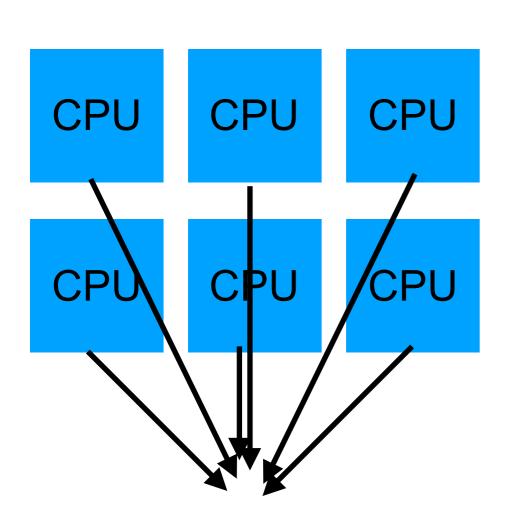


With a GPU we can get to FPGA level of throughput, but long latency

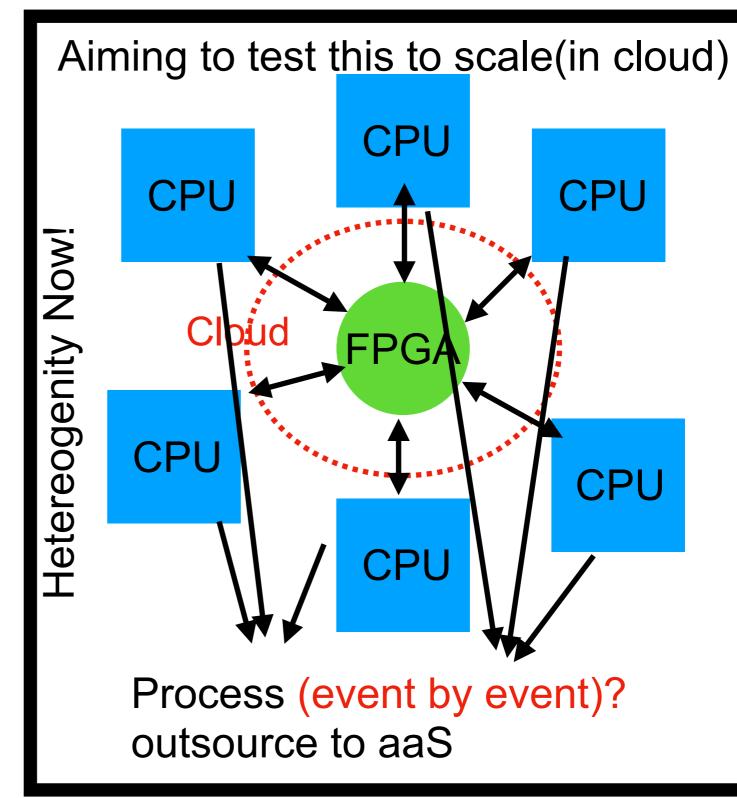
Speedups on a single FPGA can serve many different CPU cores

What have we learned?

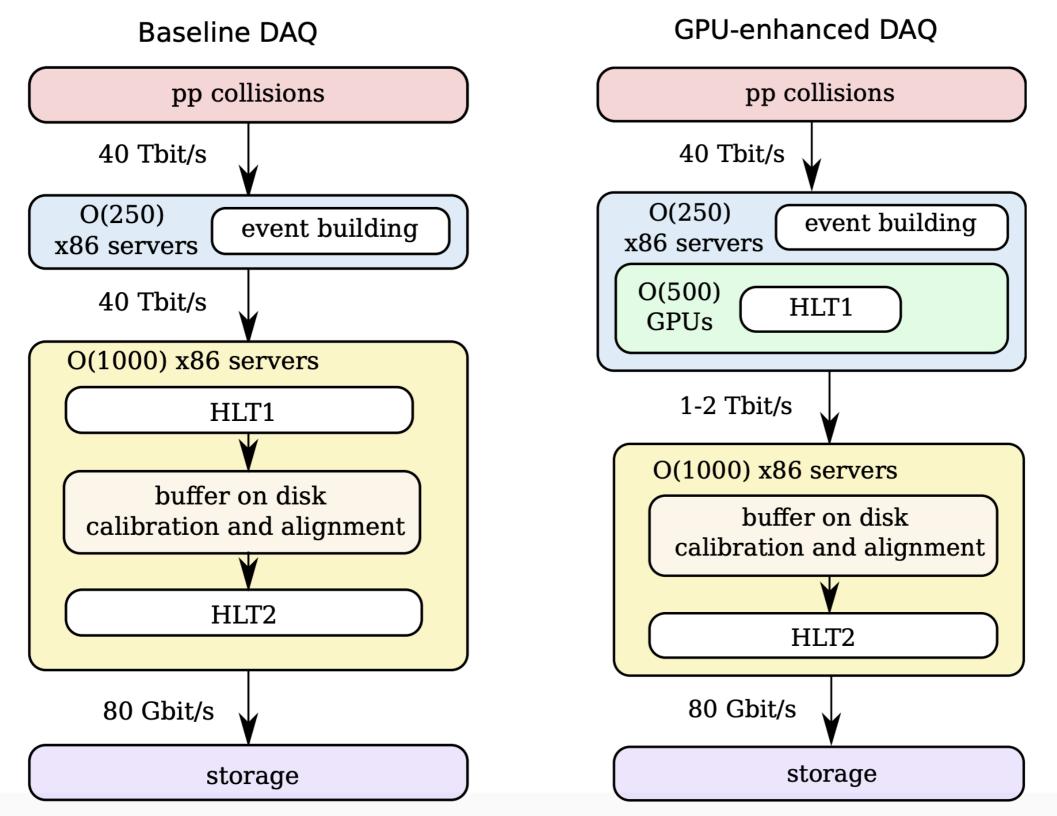
• With large speedups we can redesign our system



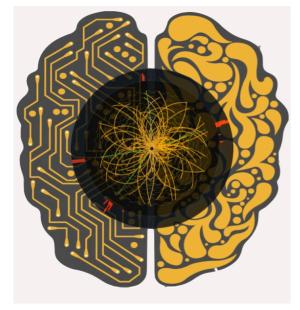
Process event by event



Alternative GPU model



Full Reconstruction algorithm ported to GPU



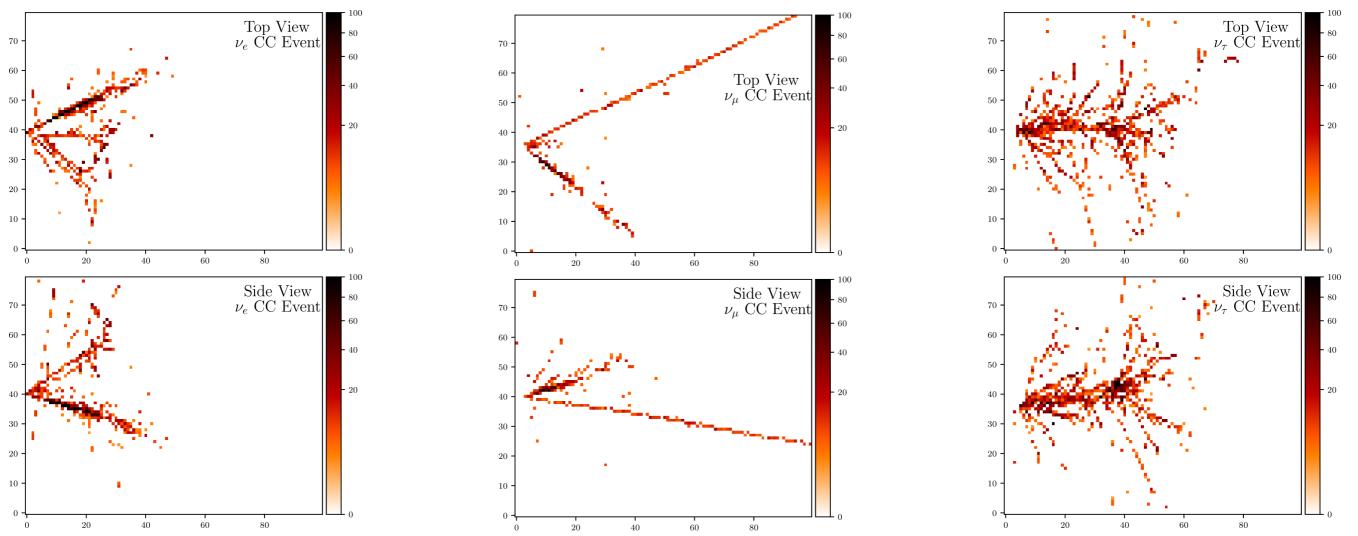
Beyond the LHC

https://fastmachinelearning.org/

- This talk has focused on data reconstruction at the LHC
- Are quickly identifying other cases with the same issues
- Have extended our collaboration to incorporate everybody
 - Inaugural workshop can be found here https://indico.cern.ch/event/822126/
 - You too can join our Fast Machine Learning effort

Lets consider a few examples

Neutrino Event Reconstruction



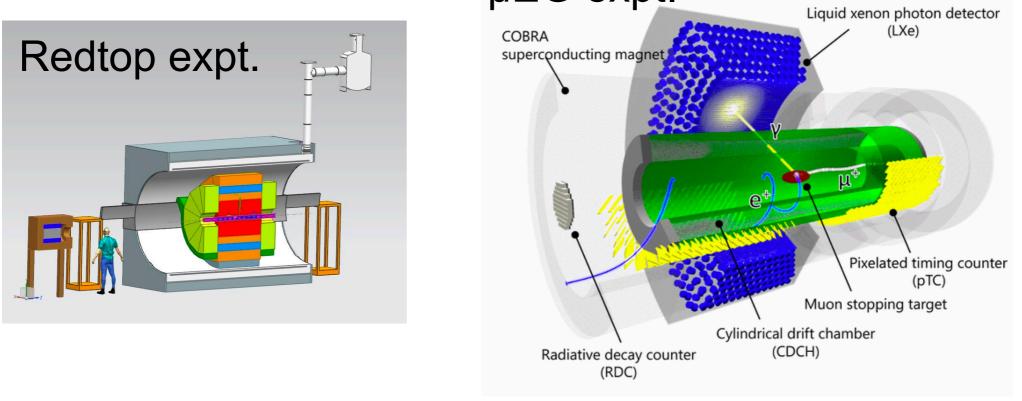
Reconstruction can be performed with a CNN (Resnet-like)

Future detectors will have to deal with 40 Tb/s of data

They will aim for per-event latency < 2ms to find Supernovae

Beam Dump Exps.

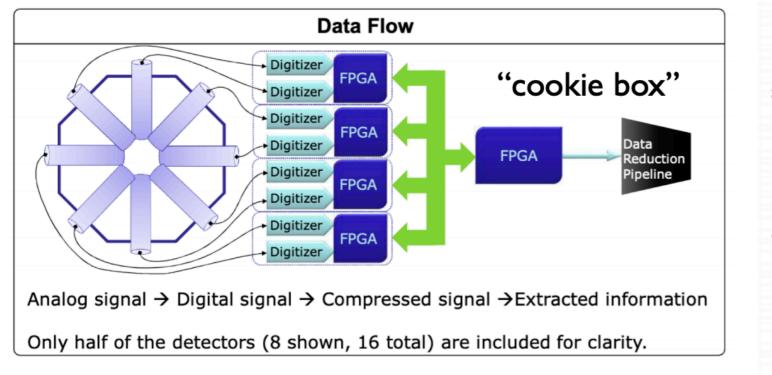
27

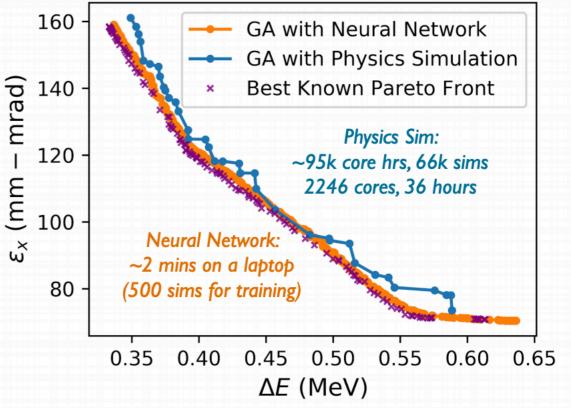


- Very large data rate expts benefit from real time processing
 - A wide variety of beam dump experiments would benefit
 - ML is a great way to preprocess and compress data
 - Allows for fast high rate processing

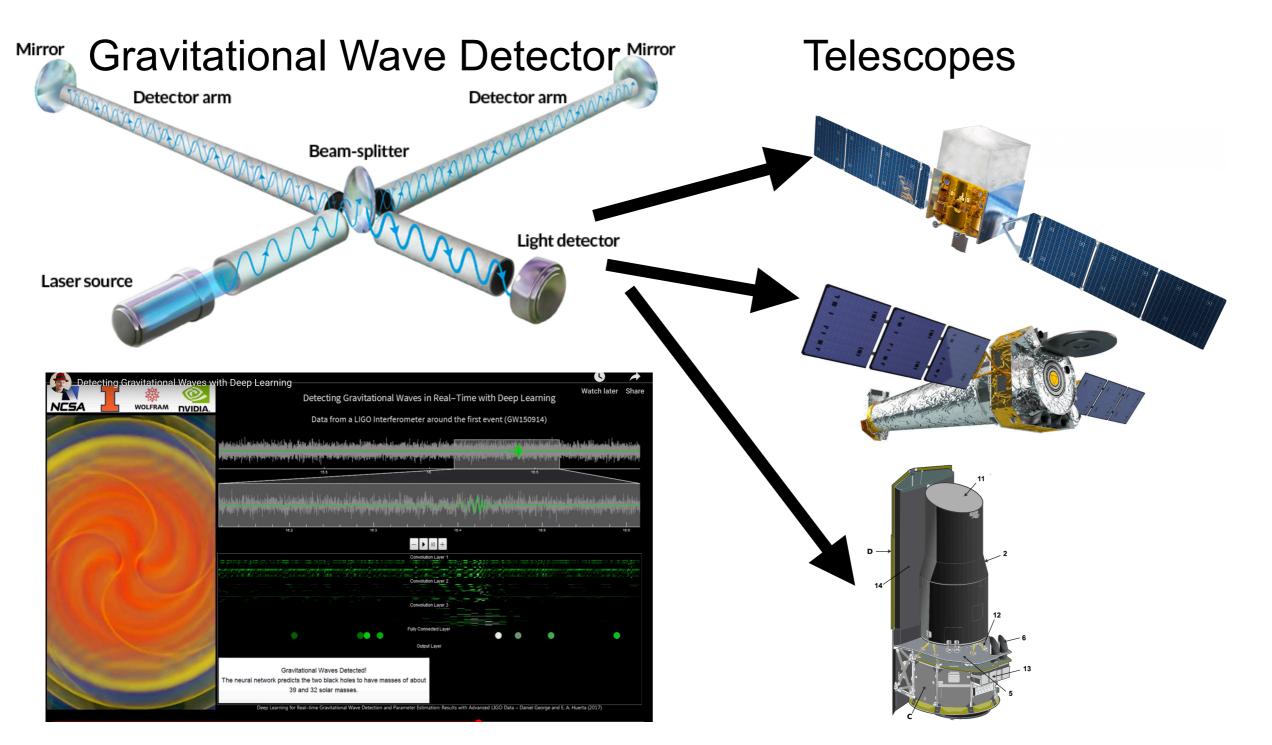
Particle Accelerators

- Demands for high speed control of accelerator systems
- Large data rates to monitor and control beam dynamics
- Have had continual success with ML solutions for modeling





Gravitational Wave Detection



Fast identification of gravitational waveforms to signal satellite and other telescopes for astronomical phenomenon multi-messenger astronomy

Lens type					
Galaxy	Quasar	Supernovae		Ast	
1000	<50	2		N 31	
2,000	120	5	LSST will produce over 10		
120,000	8,000	120	million transient alerts per night.		

Survey

Today (all)

DES

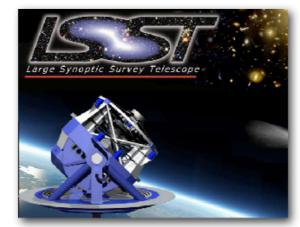
LSST

Euclid

Nord+2016; Collett+2015; Gavazzi+2008; Oguri+Marshall, 2010

170,000

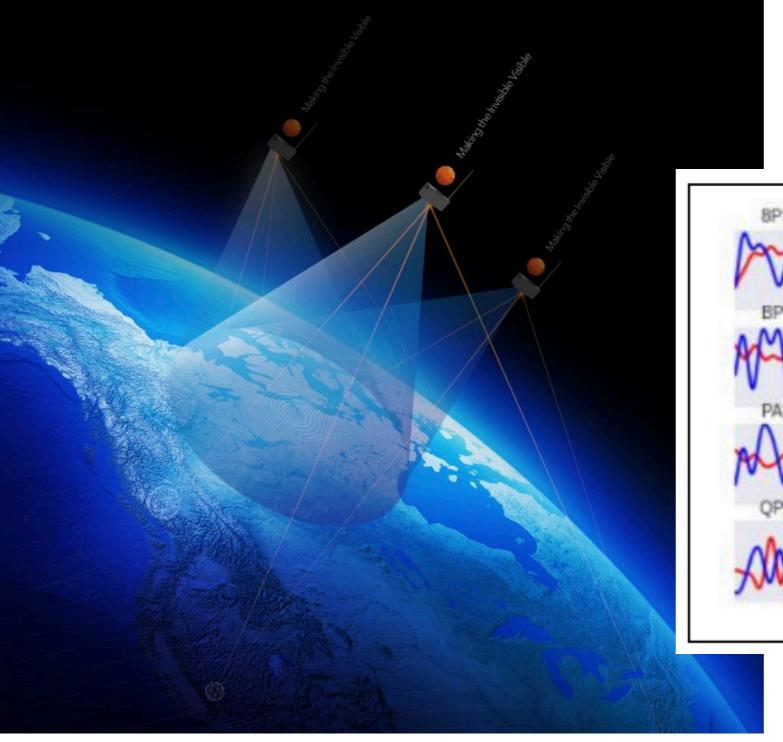
SDSS I-II 2000-08	DES 2013-18	LSST 2022-32
2.5-meter mirror	4-meter	8.4 -meter
O(10 ⁸) Galaxies 10k sq. deg. 0.2 TB/Night	O(10 ⁸) Galaxies 5k sq. deg. 1 Tb/Night	O(10 ¹⁰) Galaxies 20k sq. deg. 20 Tb/Night

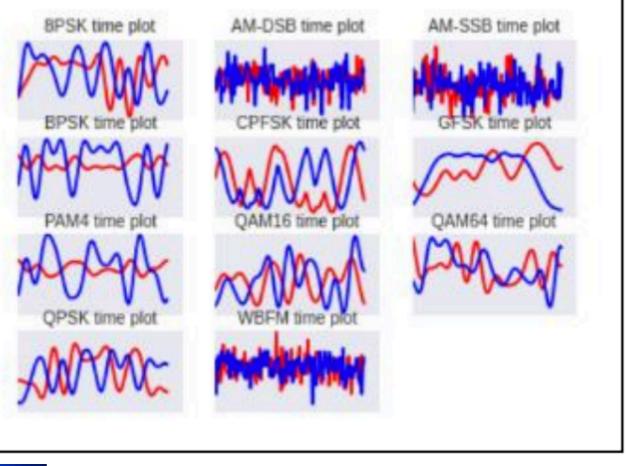


Identification of transients require real time processing of all data

Astrophysics

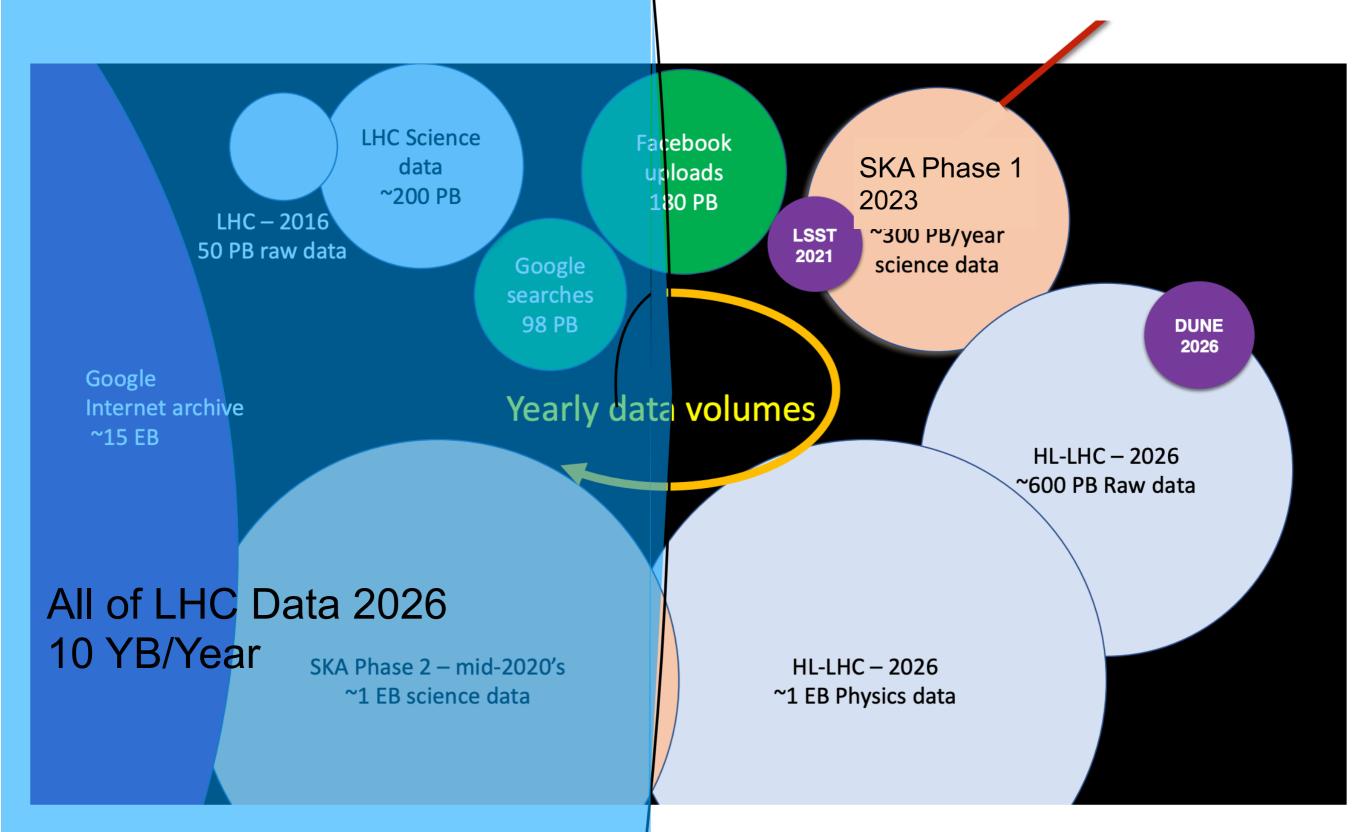
With LSST in 2022 Astrophysics datasets reach petabyte data scales with large and complicated feature analysis





Many More

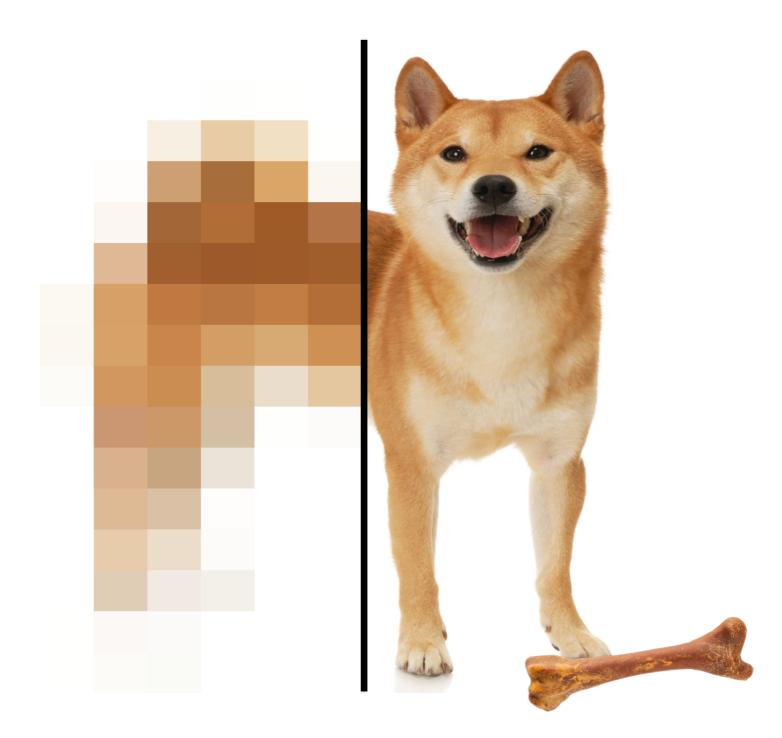
Everything Getting larger



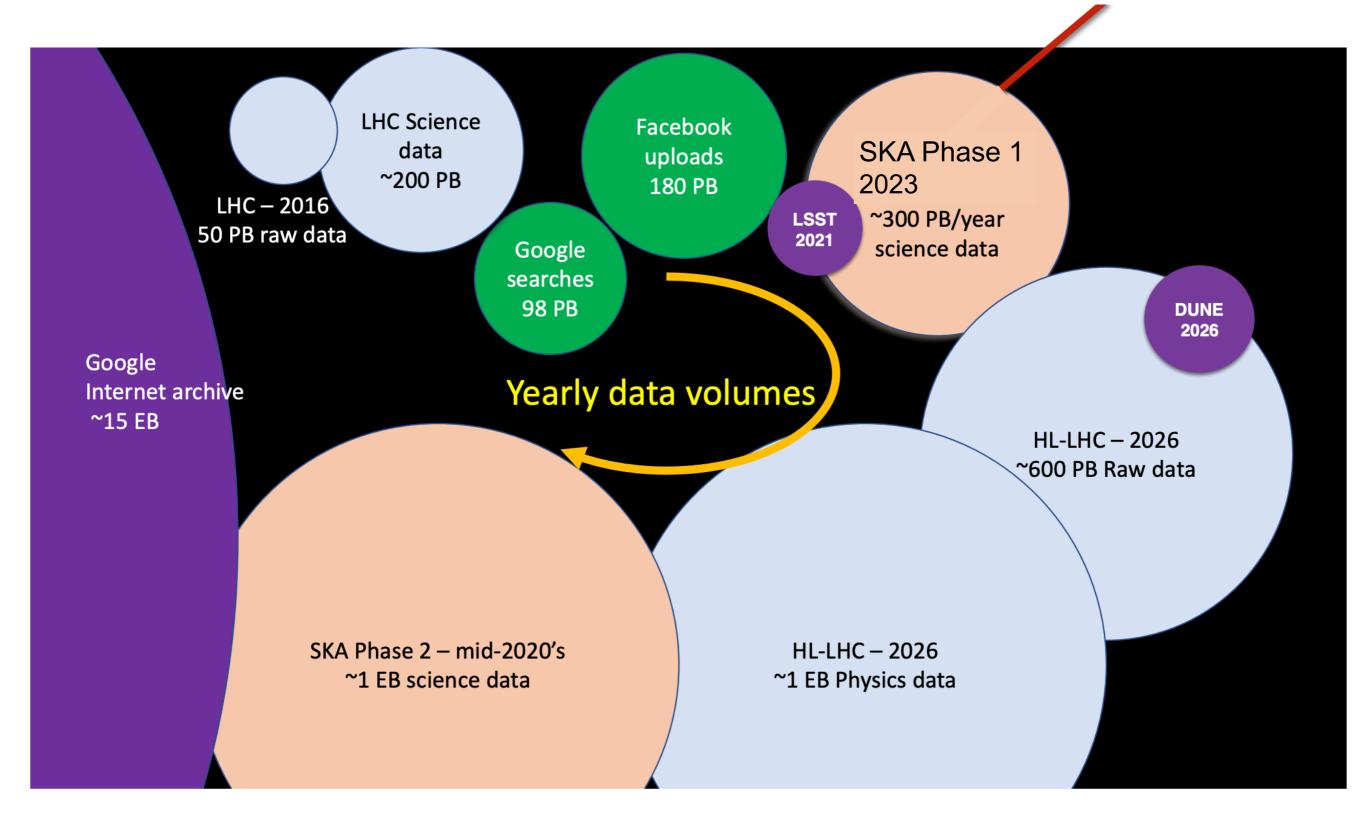
Conclusions

- Large scale campaign underway to adopt deep learning everywhere
- Scale of data processing in physics is getting larger
 - With large datasets come huge scientific potential
- Have demonstrated ML+ Heterogeneous computing works
 - Parallelization of NNs and eff of FPGAs give large speedups
 - Can be used both for very low latency systems
 - GPUs are a viable alternative for longer latency

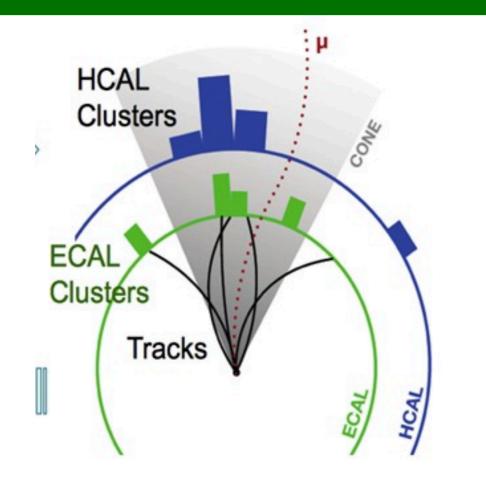
Thanks!



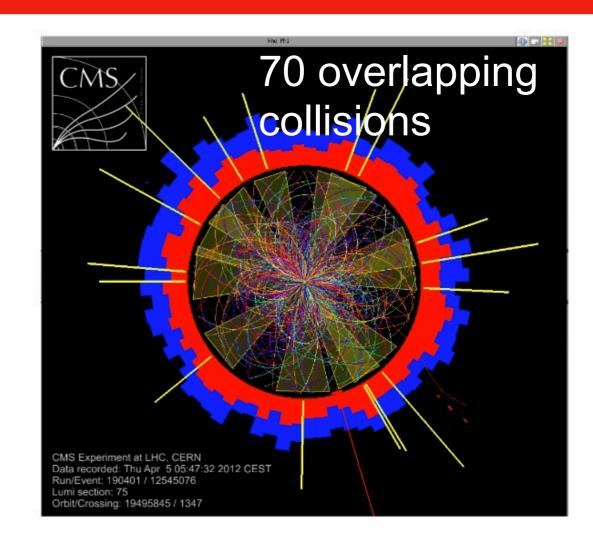
Everything Getting larger



Reconstruction Challenge



LHC reconstruction involves combining many different detectors in to particles



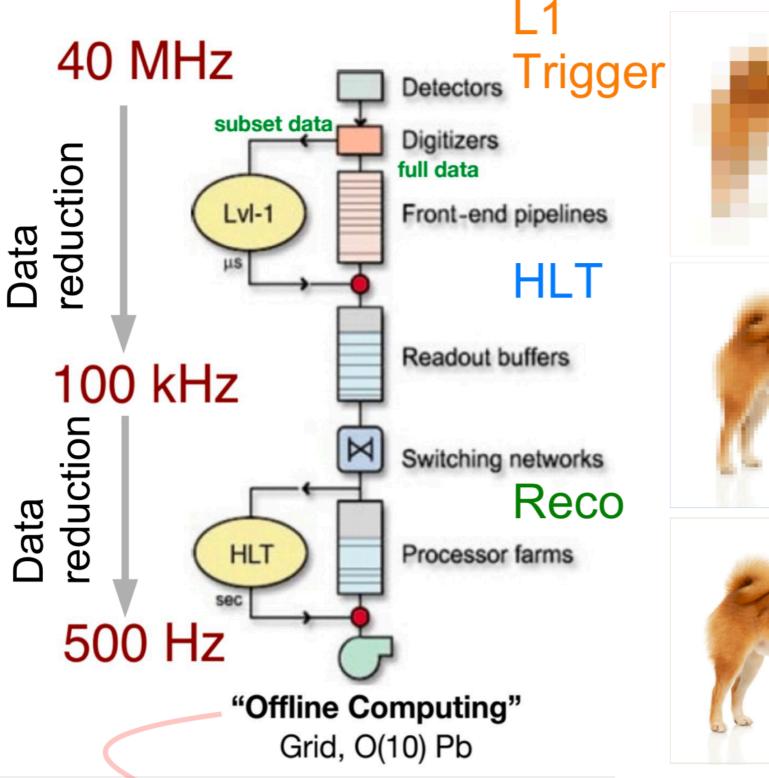
Currently we have 70 collisions lying on top of each other **Event**

In the future will be > 200 collisions

Batch N per particles

Batch 1 per Event

Data Flow in CMS



High speed Low granularity readout (10µs)

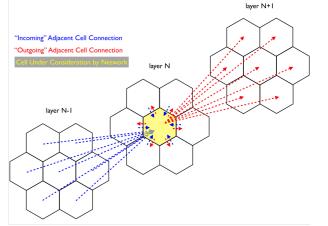
Intermediate speed (100ms) better readout

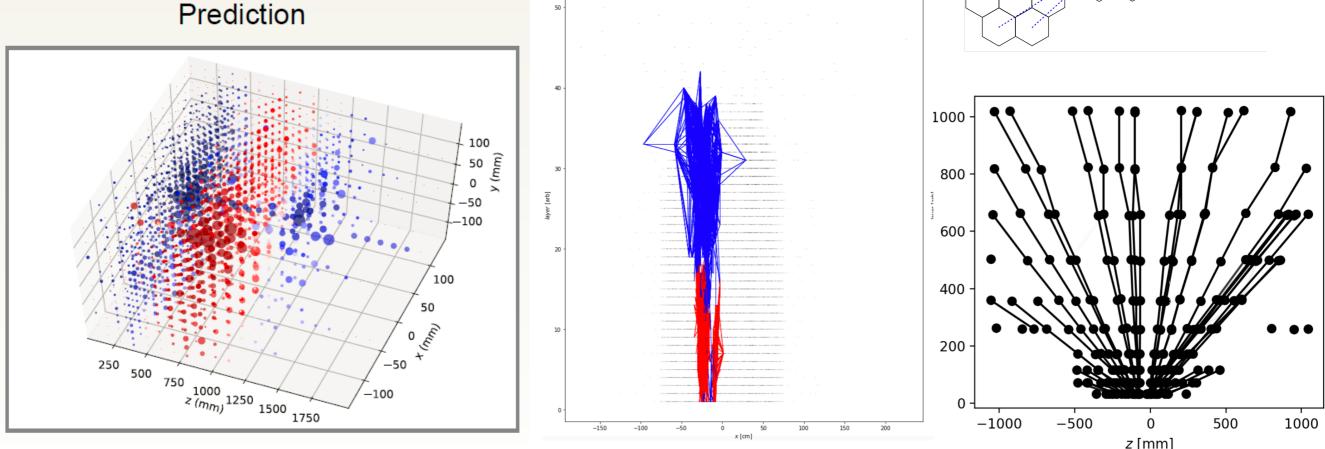
Full data readout (10s)

Despite the large rate reduction we still store many Petabytes of data

Current trends in HEP

- Rapid adoption to improve reconstruction quality
- Effective for newer detectors with large numbers of channels
- Large dedicated effort within HEP community



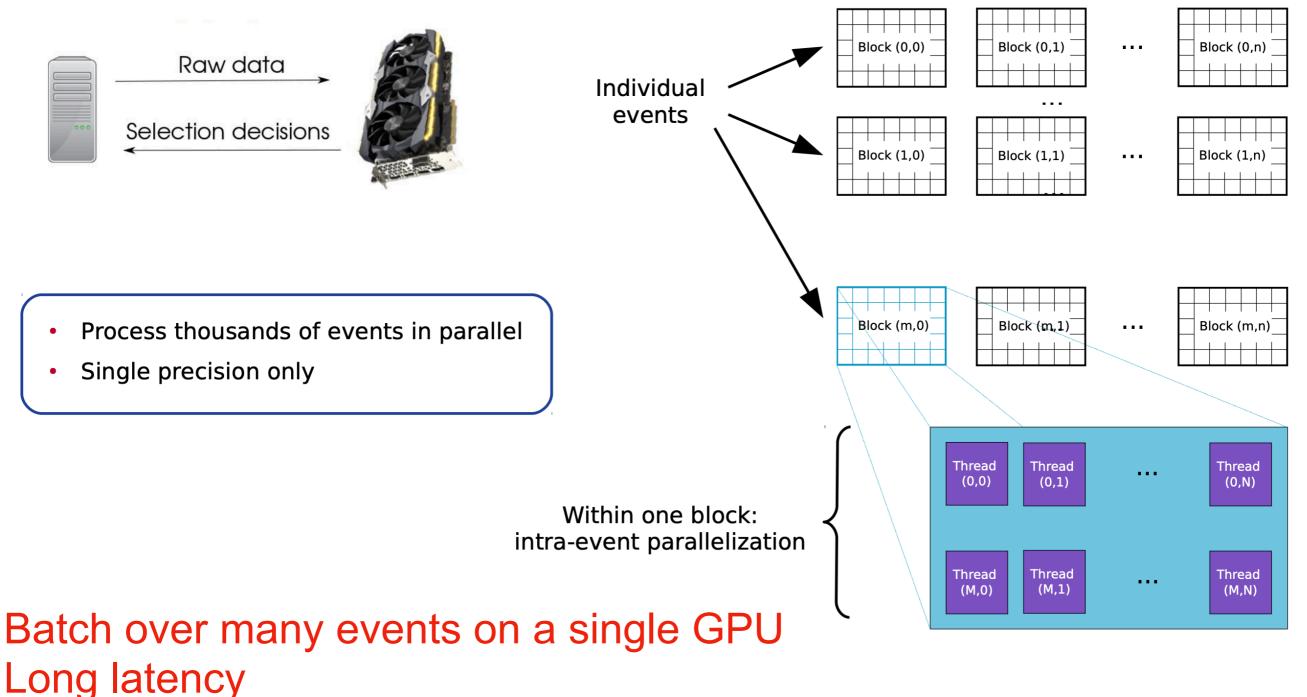


Quantization

FPGAs support arbitrary precision after pruning hls4ml 1.1 1.0 0.9 before pruning AUC / Expected AUC 0.8 Full 0.7 Pruned 0.6 g tagger q tagger w tagger 0.5 z tagger t tagger 0.4 0101.1011101010 <13,6> <18,6> <23,6> <28,6> <33,6> <3 <8,6> **Fixed-point precision** integer fractional width

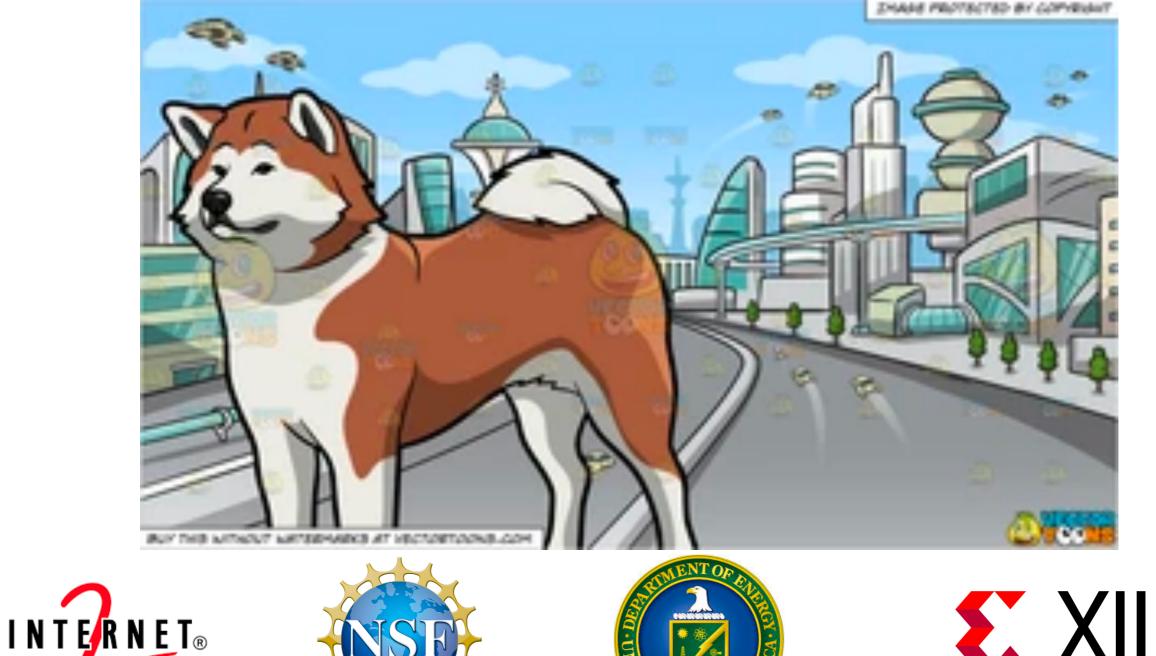
<Total bit width, integer bits above decimal>

41 Alternative GPU model



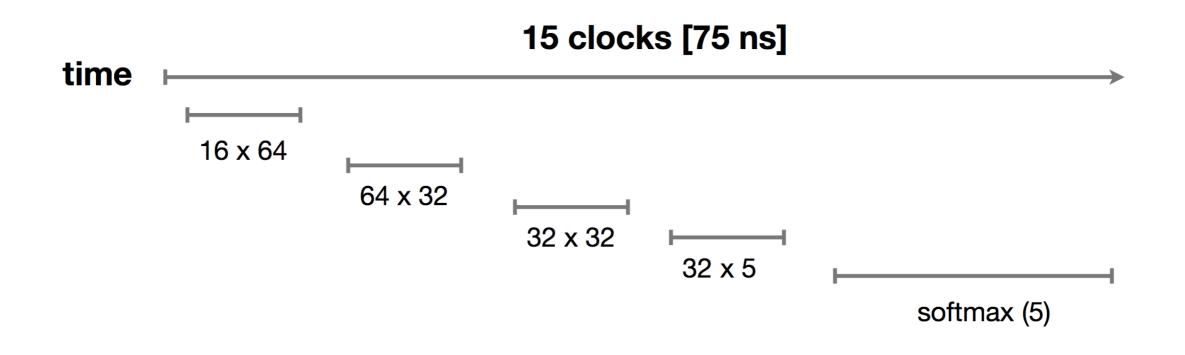
Small event size(compared to CMS/ATLAS)

Thanks!



Overall Performance

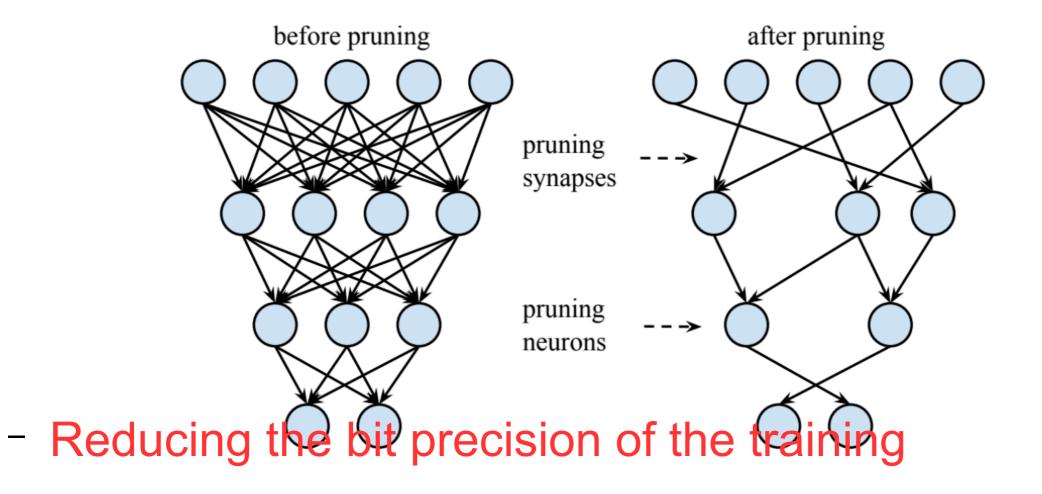
- Set the Reuse to 1 (Max speed) Precision to 18,8
 - Benchmarked this on a Virtex 7 (xc7vx690tffg1927-2)



Reuse = 1	BRAM	DSP	FF	LUT
Total	13	1116	47k	35k
% Usage	~0%	20%	3%	5%

Algorithm Compression

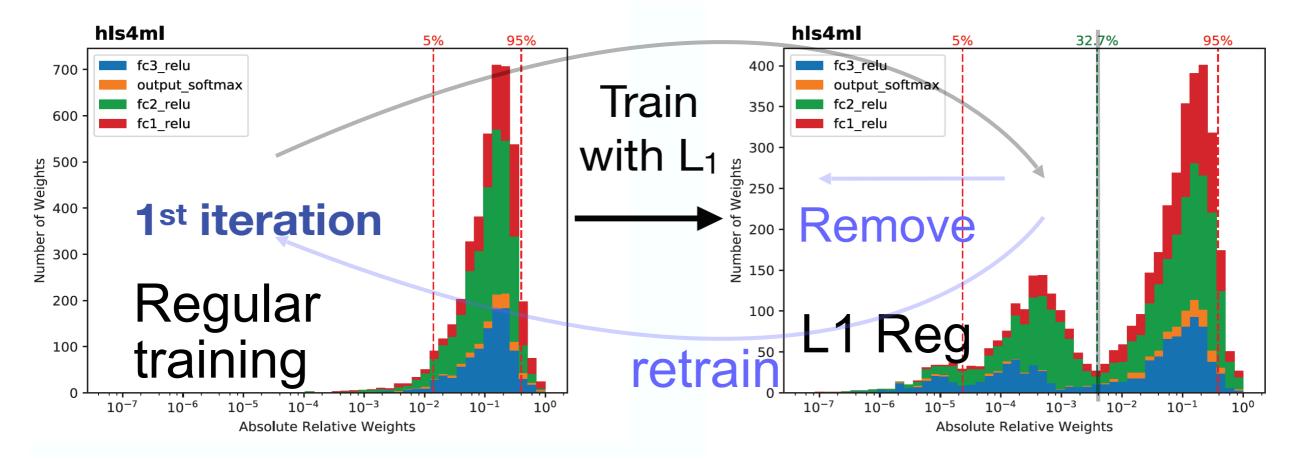
- Compression is a critical aspect to reduce ML
 - Allows us to put much larger networks on an FPGA
- Two key elements which only FPGAs can do
 - Pruning of the weights (removes multiplications)

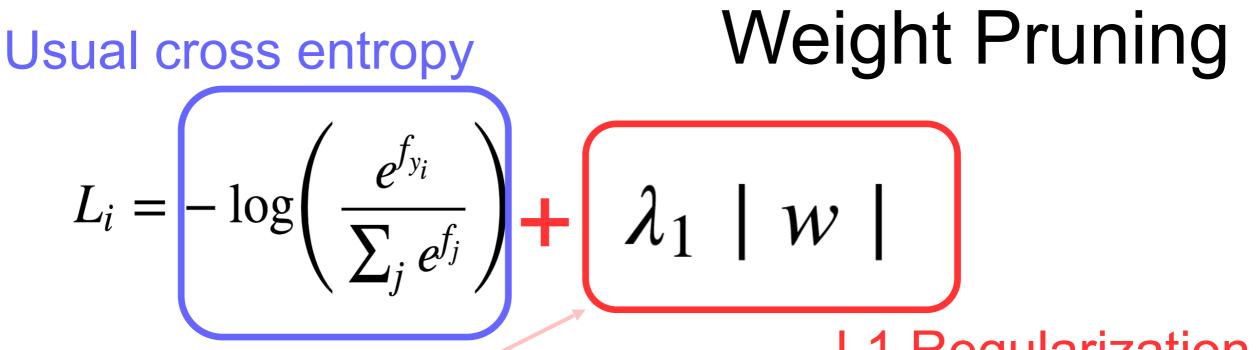


Usual cross entropy Network Compression

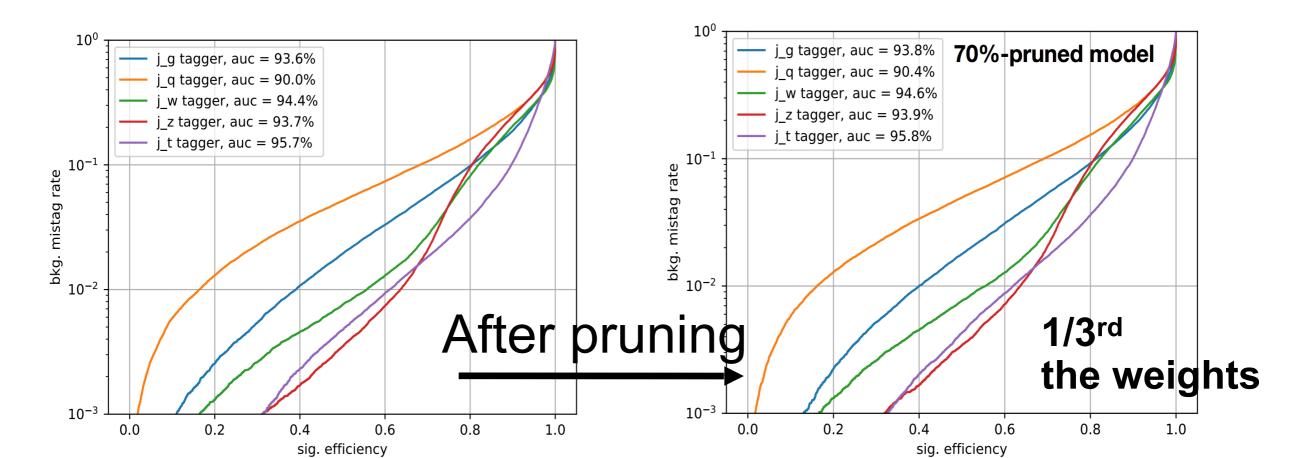
$$L_{i} = -\log\left(\frac{e^{f_{y_{i}}}}{\sum_{j} e^{f_{j}}}\right) + \lambda_{1} | w |$$

- Add a regularization term to the loss function
 - Helps to force weights to smaller values



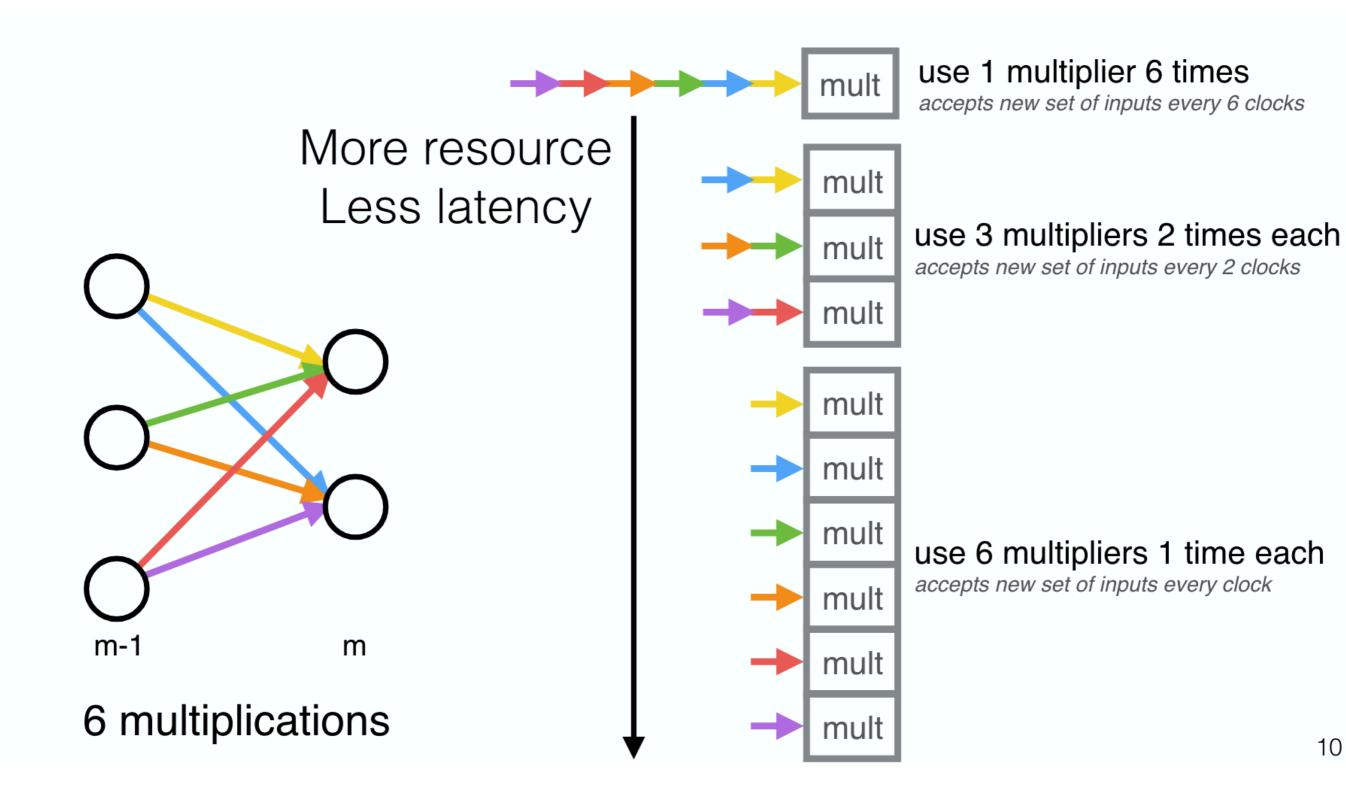


- Add a regularization term to the loss function
 - Helps to force weights to smaller values



Reuse Factor

By gauging pipeline we can adjust resource usage



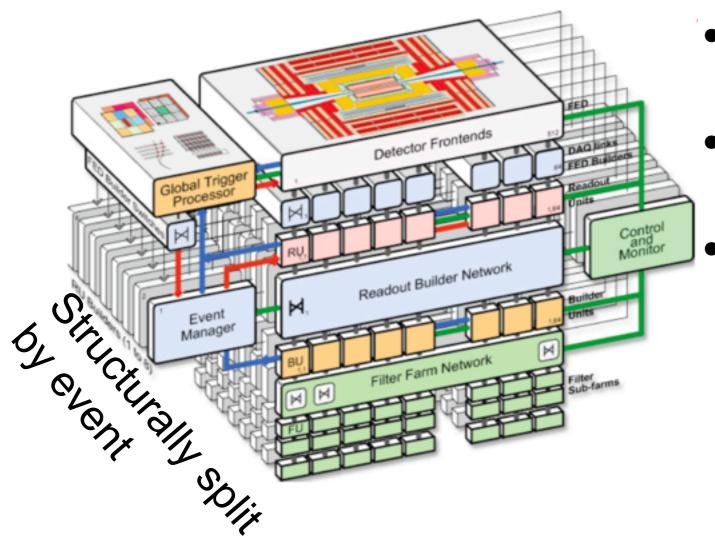


Takeaways

- LHC has a unique role to play when processing data
 - With the insanely large data rates
 - Low latency+high throughput demands specialized system
 - Our system will always be ASIC+FPGA-only
 - Working to bring ML and complex algorithms to the system
- As part of this work we developed HLS4ML
 - Quickly becoming a staple for L1 trigger development

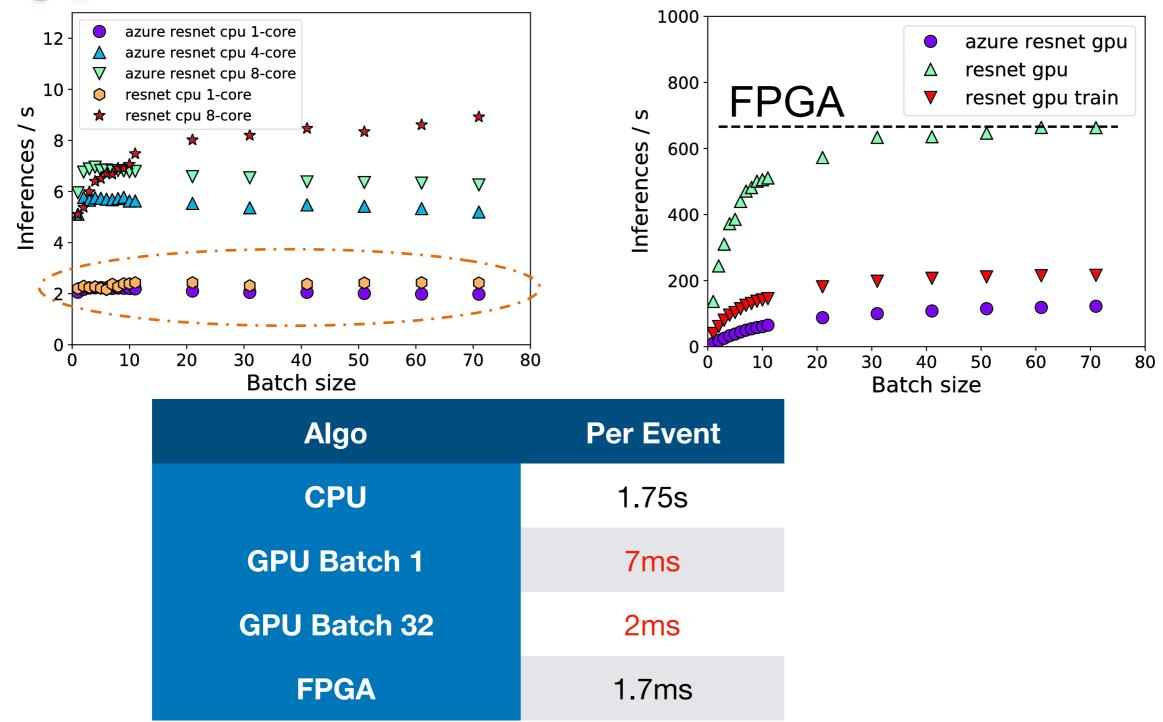
⁴⁹ (500ms) High Level Trigger

100 kHz of collisions in



- 1kHz of collisions out
- <500ms to analyze collision
- Currently
 - A local computing cluster
 - System is all CPUs
- Experiments are considering GPU/CPU system for 2022

How Fast is It?



With an FPGA can get 1.7ms inference time at batch 1 With a GPU can get 2ms/img time at batch 70

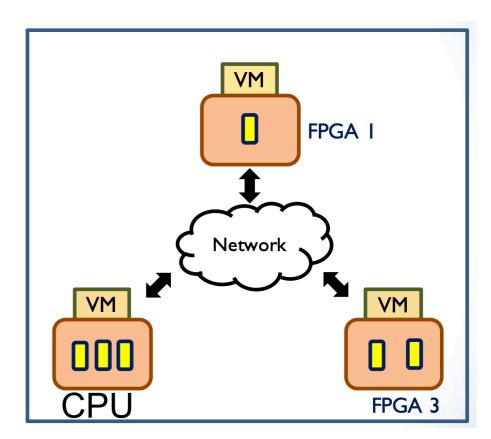
• GPU as a service

- Using tensor-rt-server
 - Industry standard
- Latency : 16ms

Algo	Per Event	+On-site aaS	
Old	50ms	N/A	
NN CPU	15ms	N/A	
NN GPU(1080 Ti)	3ms (prelim)	16ms	► 8ms/event w/concurrent
NN FPGA	2ms	TBD(<10ms)	calls

Benchmark #1

- FPGA as a service
 - Numbers TBD (<10ms)
 - Using Galapagos Naif Tarafdar+Paul Chow
 - Heterogenous middleware



Benchmark #2

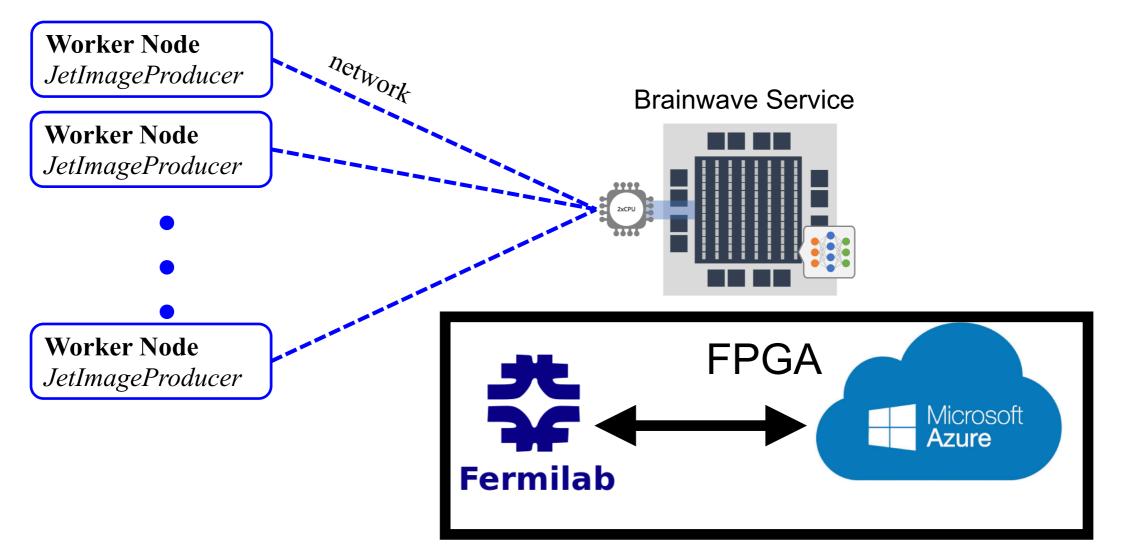
• Three Options considered : all from computer in same cluster

GPU as a service			Azure Cluster		Microsoft Databox Edge		
From local CPU to GPU service		From local CPU to Brainwave		From local CPU to FPGA system at FNAL			
Batch 1 latency: 23ms Batch 32 latency: 230ms		Batch 1 lat	ency: 15ms	Batch 1 latency: 20ms			
	Algo	Per Event	+On-site aaS				
	CPU	1.75s	N/A				
	GPU Batch 1	7ms	23ms				

1.75s	N/A	
7ms	23ms	
2ms	230ms	
1.7ms	15ms	
	7ms 2ms	

Throughput

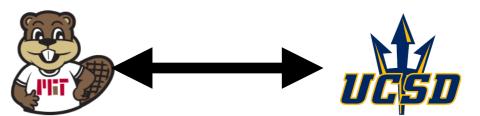
• Despite the longer latency we can have one node serve many



- With this setup how many nodes until system has to throttle down
- Bottlenecks can come from network, not just service

Benchmark #1

- Throughput is driven by the actual minimum latency of algo
 - For FPGA algo latency is $0.08ms \rightarrow working$ to get there
- Cloud have to deal with additional slow down from networking



Algo	Per Event	+On-site aaS	+Cloud aaS	Ping	On/Cloud put
Old	50ms	N/A	N/A	N/A	N/A
NN CPU	15ms	N/A	N/A	N/A	N/A
NN GPU(1080 Ti)	3ms (prelim)	16ms	90ms	75ms	1ms/30ms*
NN FPGA	2ms	TBD(<16ms)	TBD	TBD	>0.1ms

*Cloud throughput on GPU still to be scrutinized

Benchmark #2

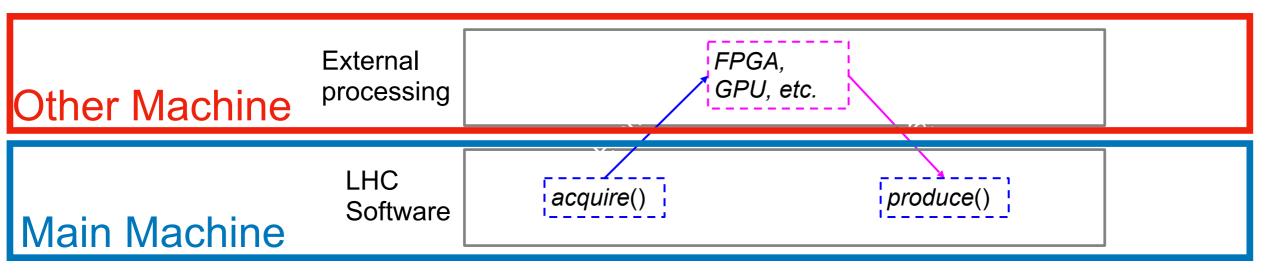


Algo	Per Event	+On-site aaS	+Cloud aaS	Ping	On/Cloud* put
CPU	1.75s	N/A	N/A	N/A	N/A
GPU Batch 1	7ms	23ms	97ms	75ms	5ms/20ms*
GPU Batch 32	3ms	240ms	975ms	75ms	8ms/20ms*
FPGA	1.7ms	15ms	60ms	25ms	1.7 ms

*Cloud throughput on GPU still to be scrutinized

Idea #2: Services

• To run these algorithms within our software

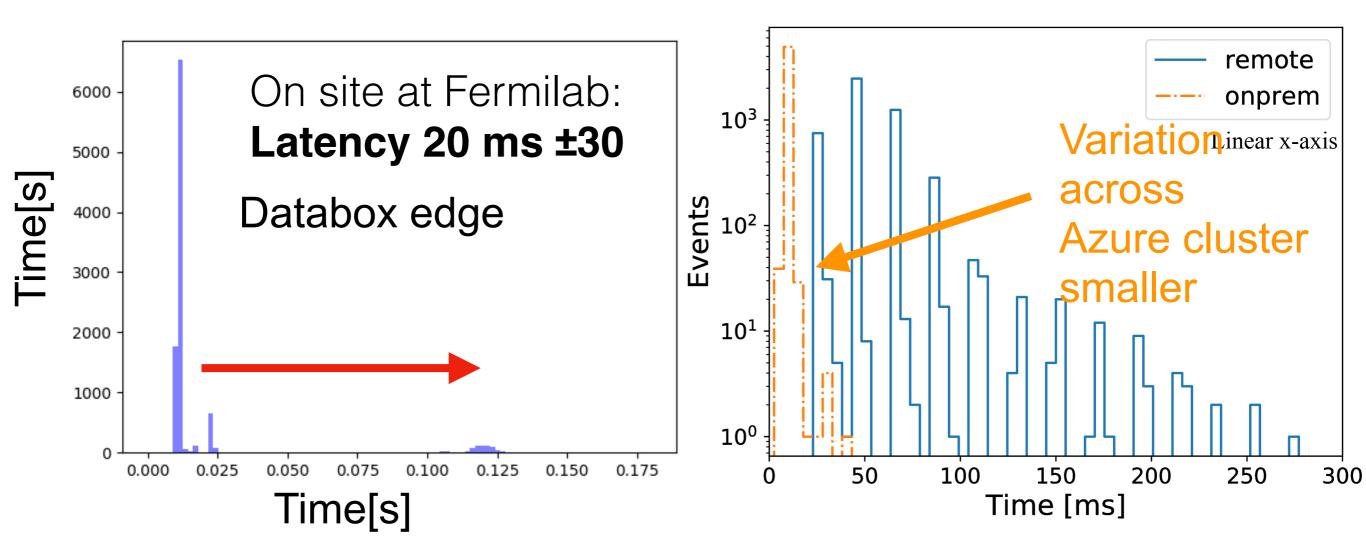


- SONIC : Services for Optimized Network Inference on Coprocessors
- Strategy
 - Use the same benchmarks as before

- Now wrap these with gRPC protocol between different machines

Services Takeaway

- Observe a ~10ms increase in latency when going to a service
 - Have observed large variations across network
 - Maintaining consistent network connection critical for running



Throughput vs Latency

- Why are we limited to 500ms in latency?
 - 500ms at 100 kHz is 400 GB of data \rightarrow not that much
 - With some redesign it is possible to increase this limit
 - Just need more disk as a buffer
- We still need to be able to process this data quick
 - That means we need to ensure throughput is high

⁵⁹ (10s) LHC Computing Grid Running jobs: 244151

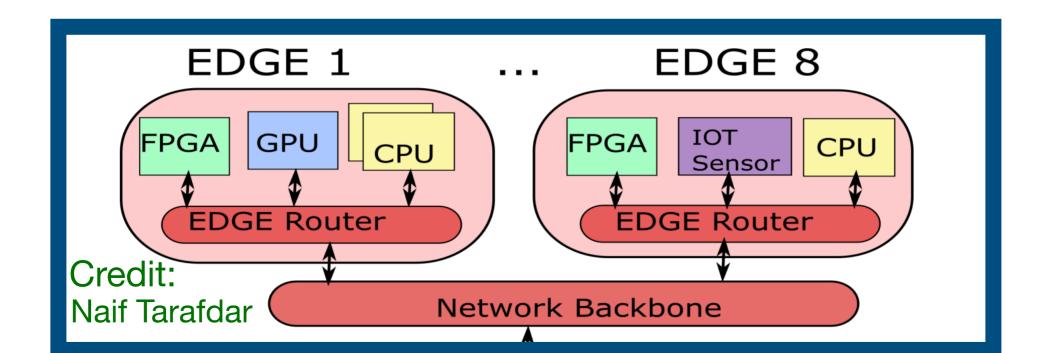
1/22/2013_5:55:18 p.m

US Dept of State Geographer © 2013 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat

Transfer rate: 40.08 GiB/sec

Offline Reco

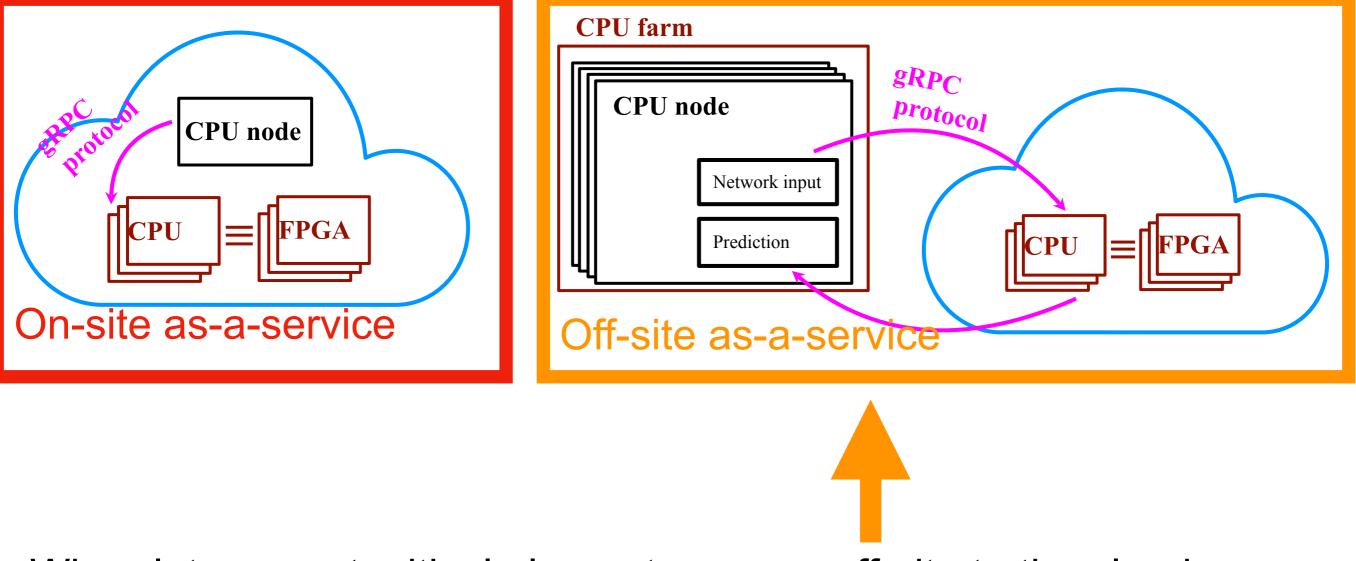
- At the final tier of reconstruction
 - Worldwide grid is roughly 0.75 Million cores 600 PB of data
 - Latency is not a critical limitation
 - Grid will have different technology all over (common protocol?)



Service Options

Low latency Triggering (previous slides)

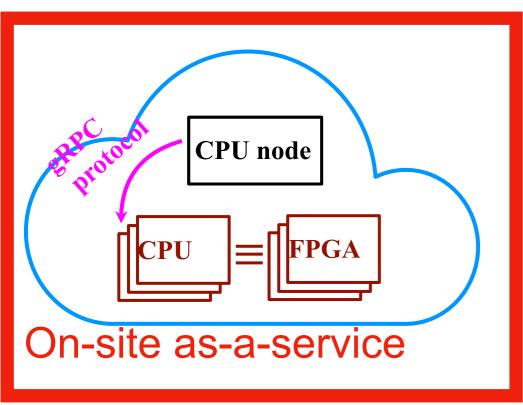
Larger latency but still large throughput (future slides)

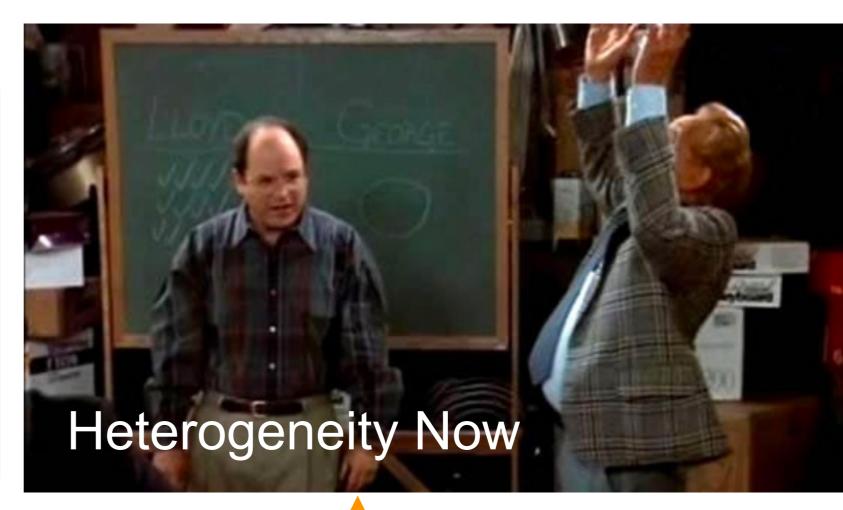


When latency not critical element : can go off-site to the cloud At the offline tier can switch to the cloud $no \rightarrow$ Heterogeneity now

Service Options

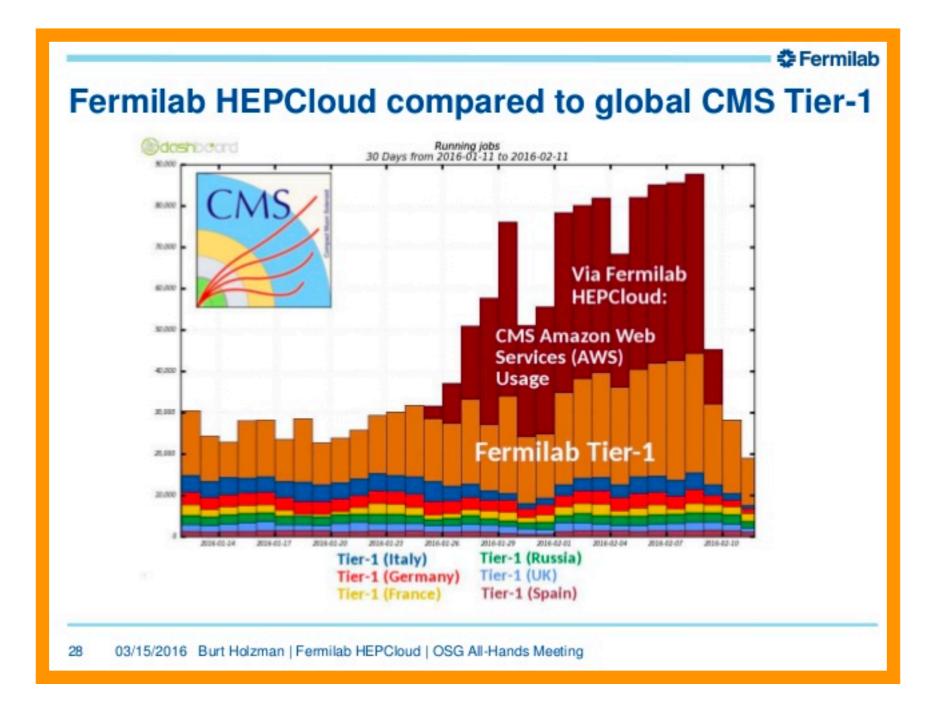
Low latency Triggering (previous slides)





When latency not critical element : can go off-site to the cloud At the offline tier can switch to the cloud $no \rightarrow$ Heterogeneity now

Service in Cloud

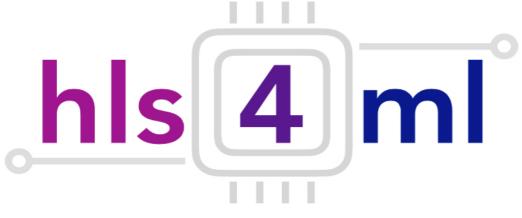


We have already done this with CPUs in the cloud

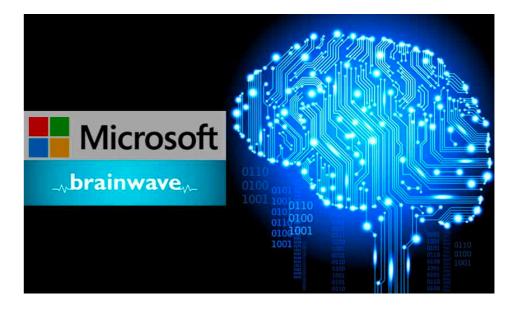
Going Beyond

- To be really effective aim for flexibility in NN design
 - Have many different NN architectures to solve many different probs
 - Adapting to industry(Resnet50/Bert/...) not a good option
- Multi-FPGA/.... support
 - Adapting to FPGAs/... will want to avoid CPU altogether
 - Can take advantage of inherent speedups and networking on FPGA
- Throughput adaptations in our computing model
 - Latency limits not critical: can consider alternative computing models

Benchmark #1 VILLING ALL PROGRAMMABLE

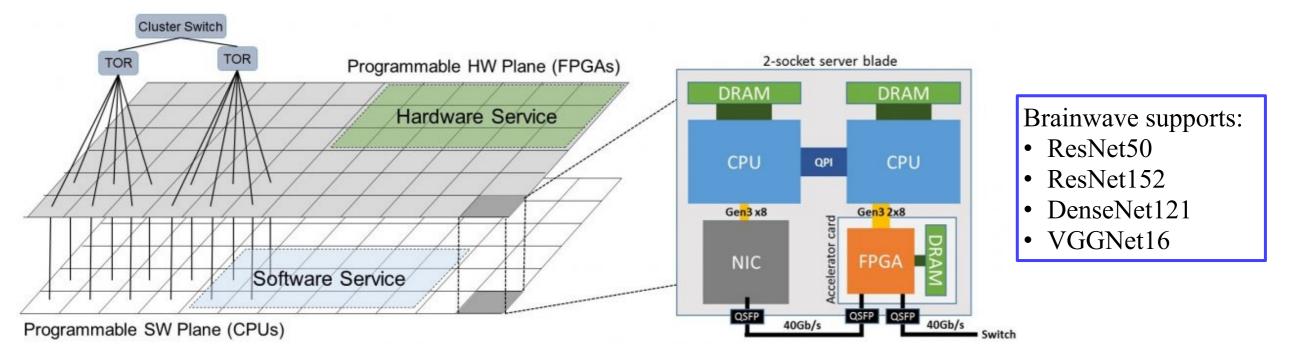


Benchmark #2



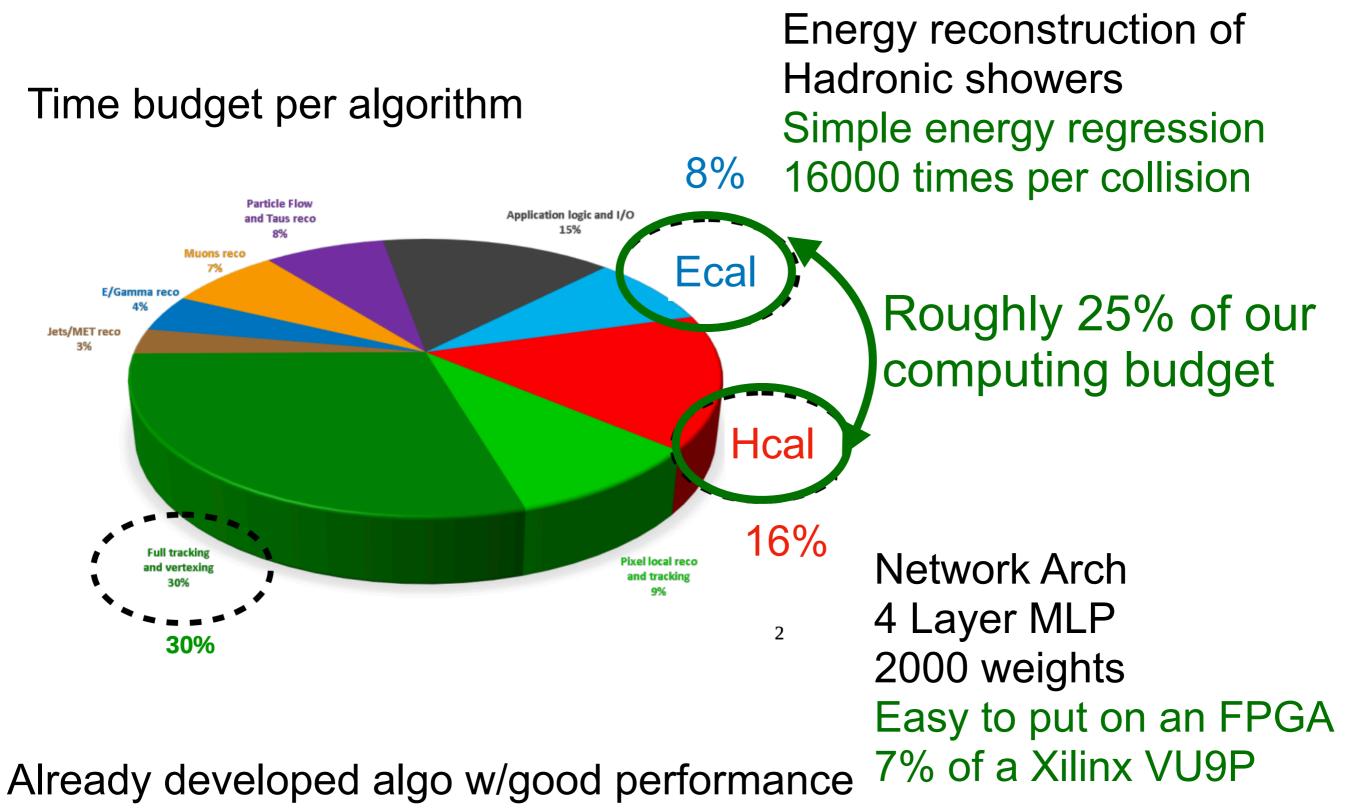
*Also investigating Xilinx ML suite(see backup) + Intel Open Vino

Microsoft Brainwave



- Full FPGA interconnected fabric setup-as-a-service
 - Capable of running many different NN architectures
 - Relying on the NPU framework for ML compilation
 - (Very) optimized use of ML on the FPGA

Benchmark #1



How Fast is it?

- Unroll network on the FPGA with hls4ml+SDAccel
- Actual network runs in 70ns on an FPGA with II of 5ns
 - For 16000 channels this equates to 80µs total
 - Transfer back and forth on PCIe is 700µs each way
- Current non-ML-based algorithm takes 50ms

Algo	Per Event
Old	50ms
NN CPU	15ms
NN GPU(1080 Ti)	3ms (prelim)
NN FPGA	2ms

Significant speed ups

Benchmark #2

Resnet50 on Azure FPGA cluster with <2ms/inference

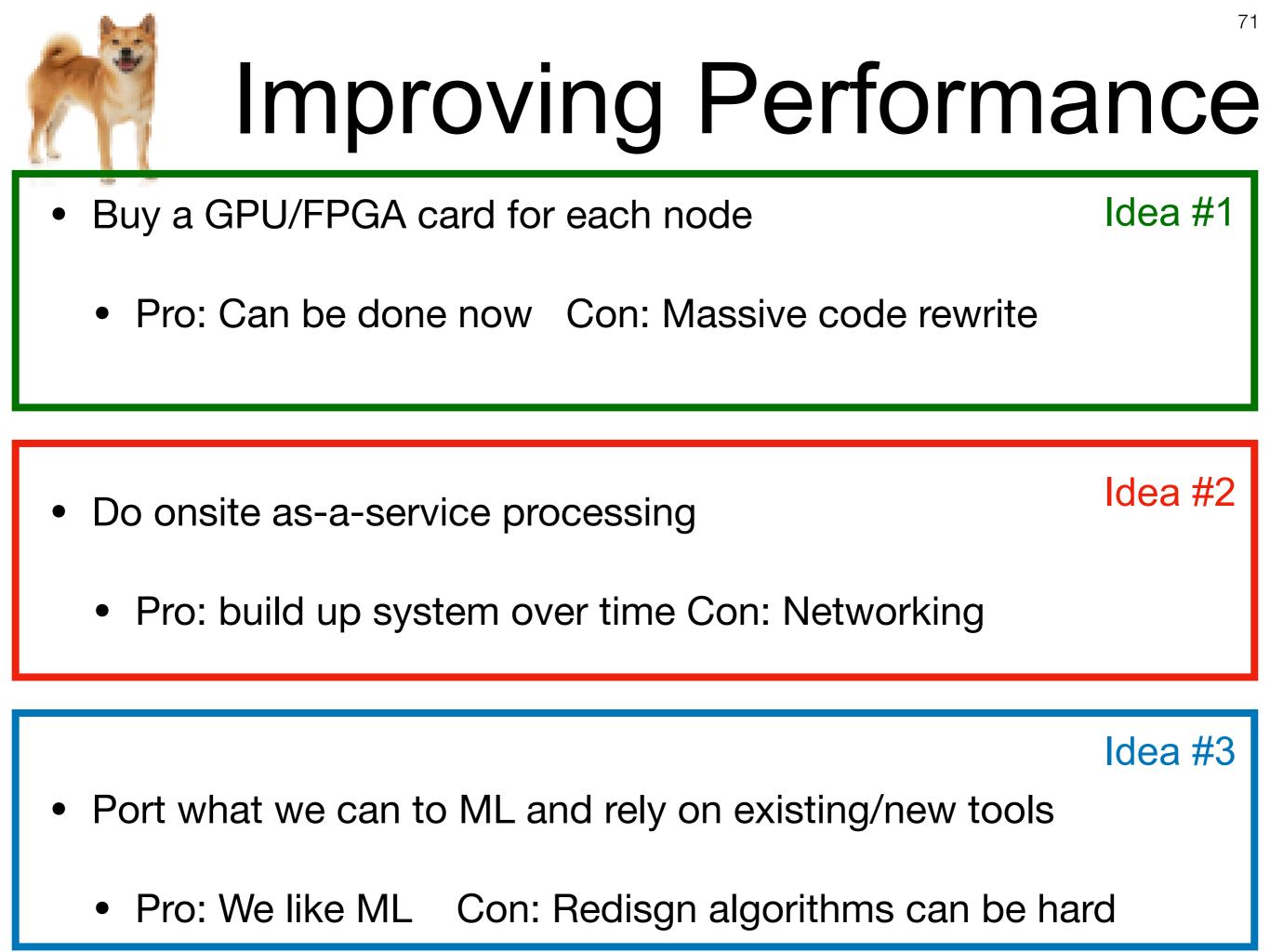
A standard ML benchmark: Top Tagging (resnet50 for physicists) Many different Top Tagging attempts

Approach	AUC	Acc.	1/eB (@ eS=0.3)	Contact	Comments
LoLa	0.980	0.928	680	GK / SImon Leiss	Preliminary number, based on LoLa
LBN	0.981	0.931	863	Marcel Rieger	Preliminary number
CNN	0.981	0.93	780	David Shih	Model from Pulling Out All the Tops with Computer Vision an Deep Learning (1803.00107)
P-CNN (1D CNN)	0.980	0.930	782	Huilin Qu, Loukas Gouskos	Preliminary, use kinematic info only (https://indico.physics.lbl.gov/ ndico/event/546/contributions/ 270/)
6-body N-subjettiness (+mass and pT) NN	0.979	0.922	856	Karl Nordstrom	Based on 1807.04769 (Report of My Demise Are Greatly Exaggerated: N-subjetting is Taggers Take On Jet Im ges)
8-body N-subjettiness (+mass and pT) NN	0.980	0.928	795	Karl Nordstrom	Based on 1807.04769 Reports of My Demise Are Greatly Exaggerated: N-surgettiness Taggers Take On the Images)
Linear EFPs	0.980	0.932	380	Patrick Komiske, Eric Metodiev	d<= 7, chi <= 3 FpPs with FLD. Based on 1712 /7124: Energy Flow Polynomials: A complete linear basis or jet substructure.
Particle Flow Network (PFN)	0.982	0.932	888	Patrick Komiske, Eric Metodiev	Median over ten trainings. Based on Tabl 5 in 1810.05165: Energy Flow to tworks: Deep Sets for Particle Jets.
Energy Flow Network (EFN)	0.979	0.927	619	Patrick Komiske, Eric Metodiey	ledian over ten trainings. Based on Table 5 in 1810.05165: Energy Flow Networks: Deep Sets for Particle Jets.
2D CNN [ResNeXt50]		0.000		Huilin Qu, Luukas Goulkos	Preliminary from indico.cern.ch/event/745718/cont butions/3202526
DGCNN	0.984	0.937	1160	Huiloi Qu, Lukas Gouskos	Preliminary from indico.cern.ch/event/745718/cont butions/3202526

Worlds Best Tagger: AUC=98.4% acc.=93.7% 1/ε_B = 1160 Our Tagger: AUC=98.3% acc.=93.5% 1/ε_B = 1000 100 Floating point: AUC = 98.0%, acc. = 90.1%, $1/\epsilon_B = 671$ Quant.: AUC = 97.5%, acc. = 84.1%, $1/\epsilon_B$ = 415 Quant., f.t.: AUC = 98.2%, acc. = 93.0%, $1/\epsilon_B = 971$ Brainwave: AUC = 98.2%, acc. = 92.6%, $1/\epsilon_B = 935$ Background efficiency 10⁻¹ 10⁻³ Brainwave, f.t.: AUC = 98.3%, acc. = 93.5%, $1/\epsilon_B = 1000$ This tagger is state of the ar 10^{-2} Retraining w/Brainwave fixed precision 10^{-4} 0.2 0.0 0.6 0.8 1.0 0.4 Signal efficiency

Accelerators Takeaway

- FPGAs and GPUs both work FPGAs better(low batch)/as good
- Benchmark #1
 - Latency lowest on FPGA despite a large batch process
 - Limited by I/O considerations with PCIe
- Benchmark #2
 - FPGA dominates at batch 1
 - With large throughput GPU can start to compete



Future Strategies

Incorporating Heterogenous systems(GPU/FGPA)

	Idea #0 Port Existing Algos	Idea #3 Upgrade to ML Algos	
ldea #1 Investigate onboard GPU/FPGA	Rewrite all of our code in CUDA/Kokkos HLS/RTL/???	Tools exist TF/Pytorch/TRT Xilinx ML Suite Brainwave	
Idea #2 Outsource GPU/FPGA to a service	Write specialized interface	Tools exist: TRT-server Brainwave and in cloud!	

Future Strategies

Incorporating Heterogenous systems(GPU/FGPA)

	Idea #0 Port Existing Algos	Idea #3 Upgrade to ML Algos		talk
ldea #1 Investigate onboard GPU/FPGA	Rewrite all of our code in CUDA/Kokkos HLS/RTL/???	Tools exist TF/Pytorch/TRT Xilinx ML Suite Brainwave		CUS Of this . backup for others)
Idea #2 Outsource GPU/FPGA to a service	Write specialized interface	Tools exist: TRT-server Brainwave and in cloud!		Foc (see ba

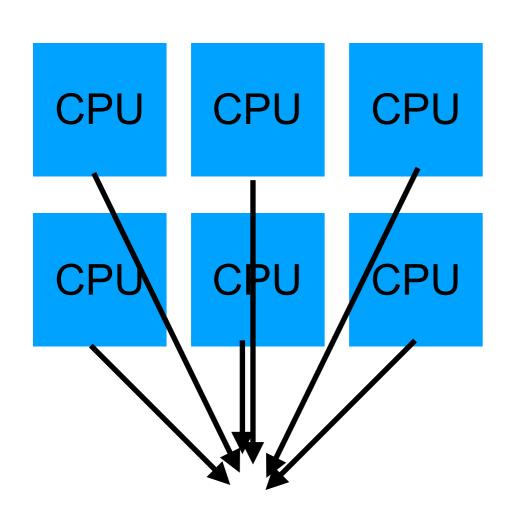
ML is highly parallelizeable \rightarrow Big speed ups

Takeaways

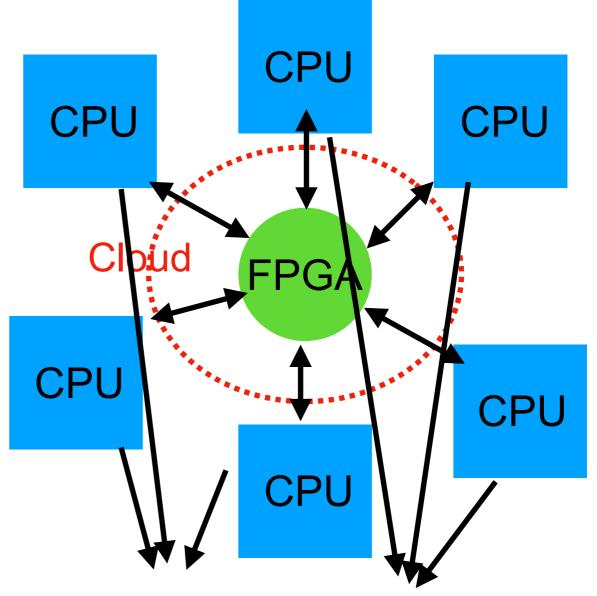
- When large speedups are present in overall throughput
 - Where as-a-service starts to really shine
 - Can think about one service for many machines
 - Will take a latency hit in our system from this
 - This is something we can deal with
- Our next step is bringing the studies to scale
 - Can we serve many thousands of processes at once?

What have we learned?

• With large speedups we can redesign our system



Process event by event

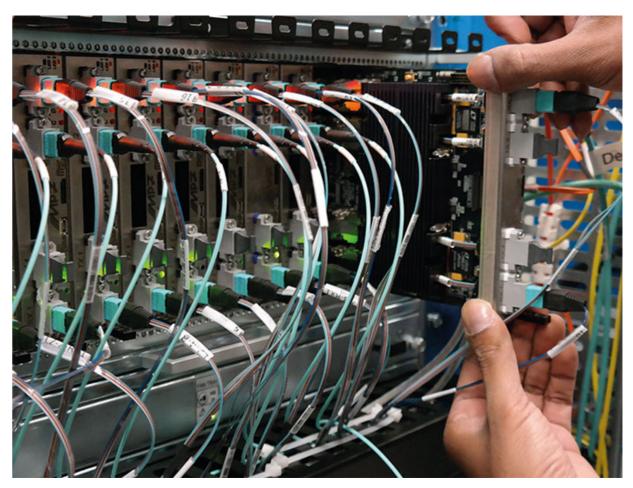


Process (event by event)? outsource to aaS

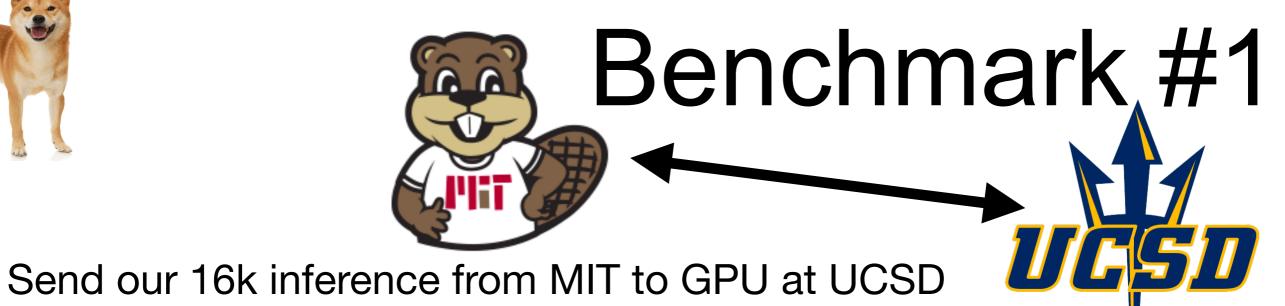


- A new event every 25ns
- Interconnected FPGAs Optical links between the chips 48-112 Links per chip Links run at 10-25 Gbps Full system is O(1000) FPGAs

L1 Trigger

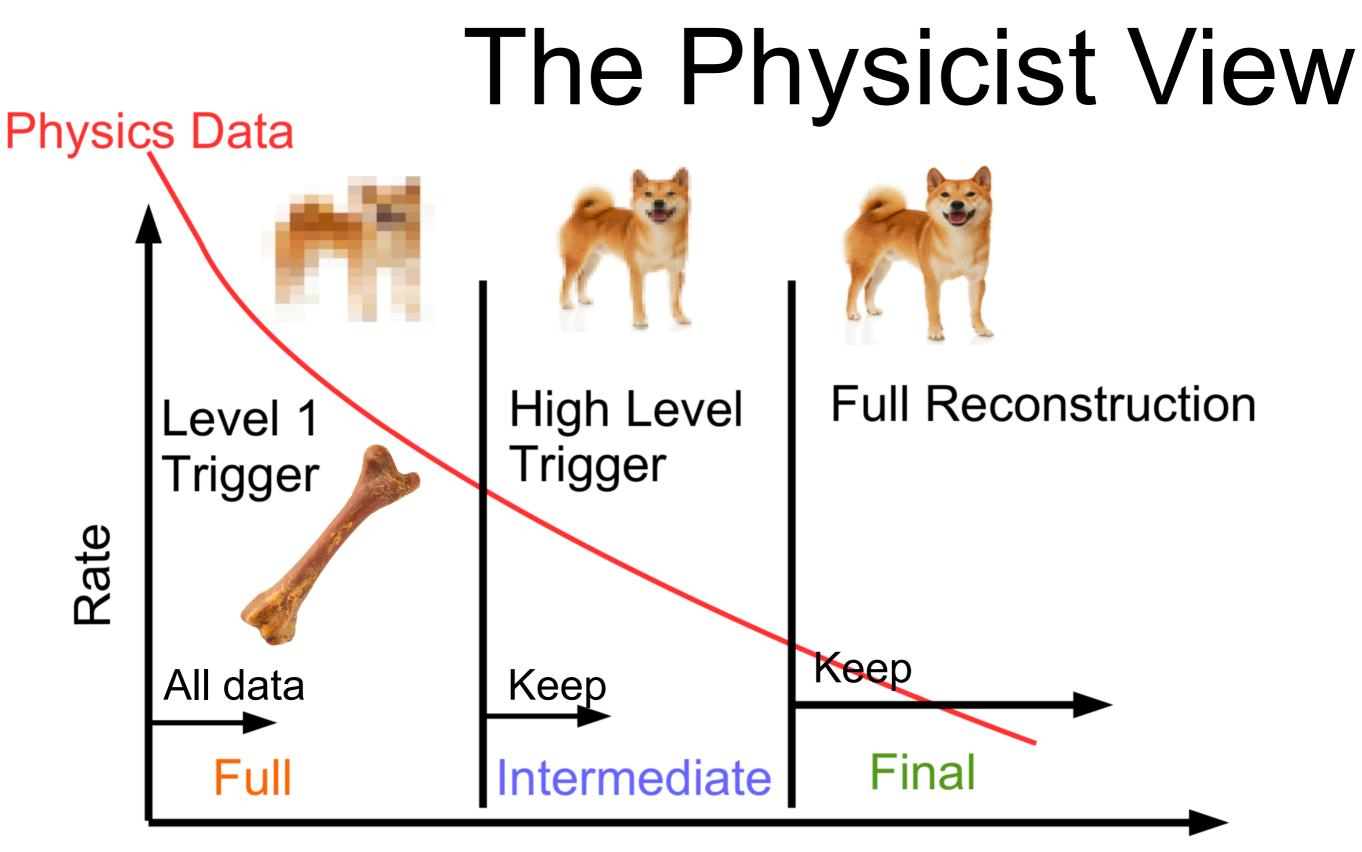


- We have at MOST 1µs to run an algorithm
 - We aim for algorithms that are in the 100ns range
- Want to make the fastest possible algorithm
- Want to have the smallest initiation interval
 - We apply algorithms to multiple subsets of total event

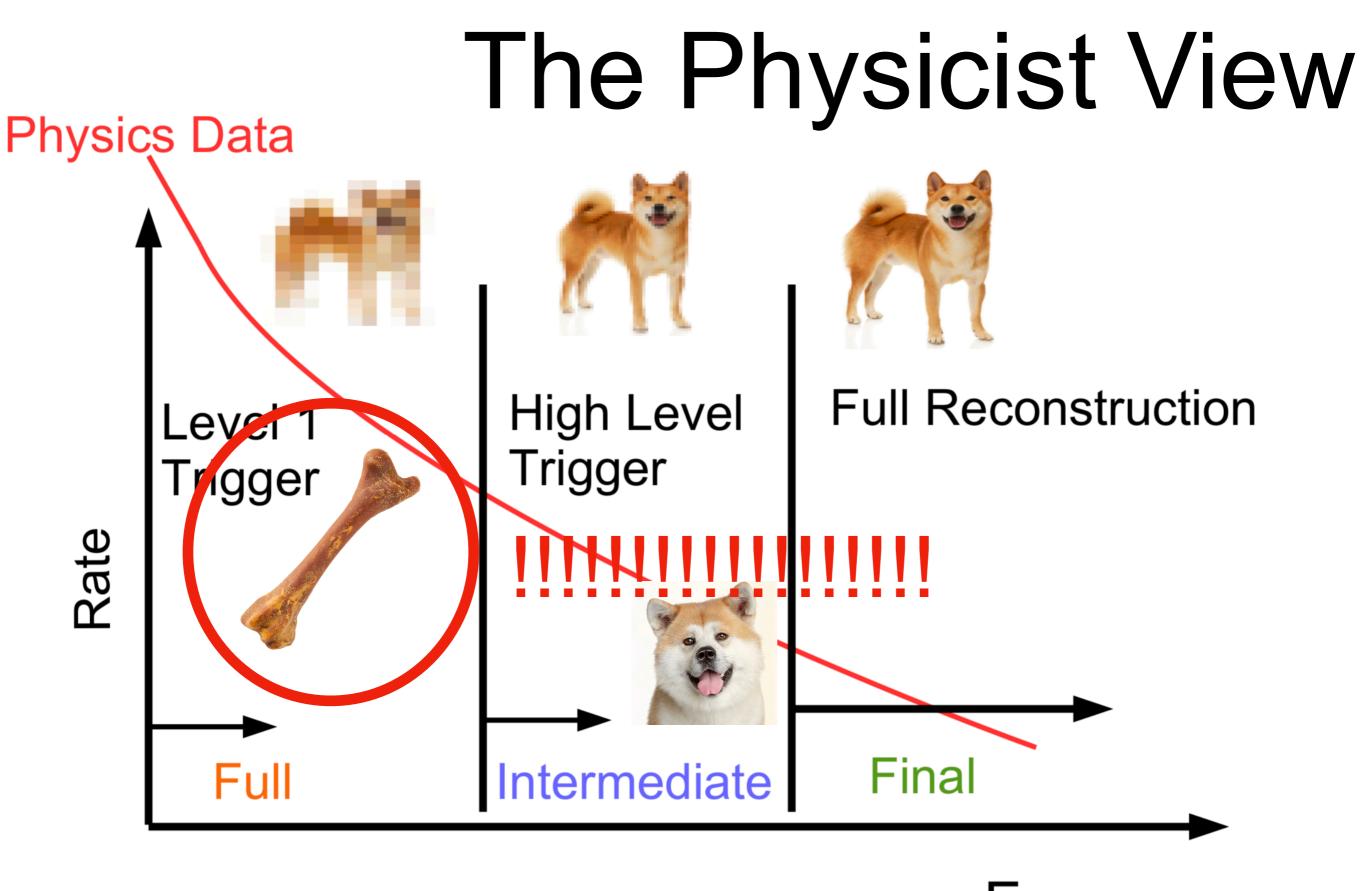


- Ping time is 75ms (speed of light google map distance is 32ms)
- To UCSD and back takes ping time + 16ms
- Still working on test with FPGA (soon)

Algo	Per Event	+On-site aaS	+Cloud aaS	Ping
Old	50ms	N/A	N/A	N/A
NN CPU	15ms	N/A	N/A	N/A
NN GPU(1080 Ti)	3ms (prelim)	16ms	90ms	75ms
NN FPGA	2ms	TBD(<16ms)	TBD	TBD

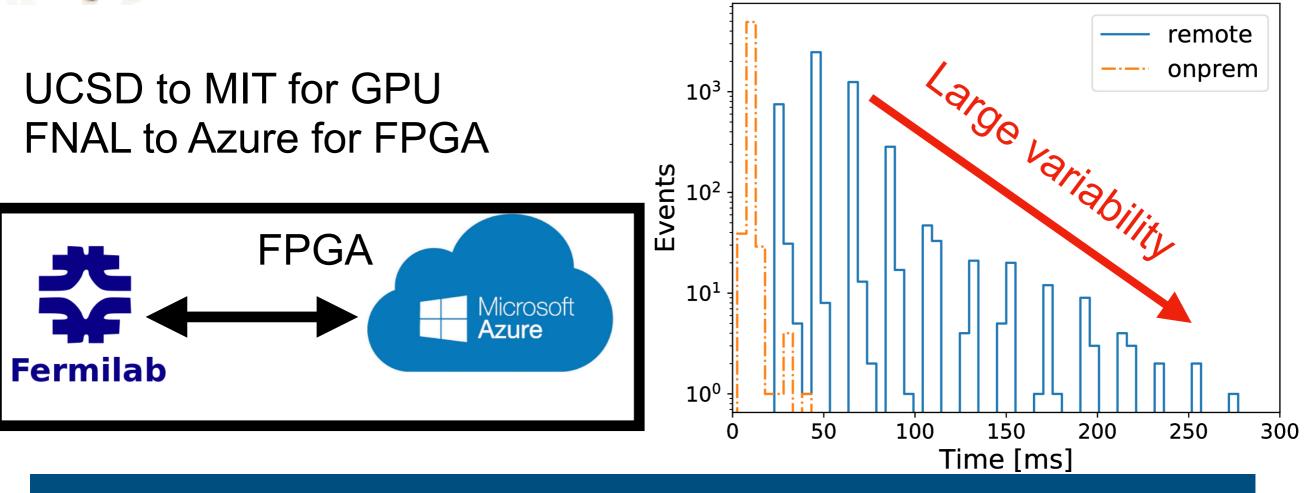


Energy



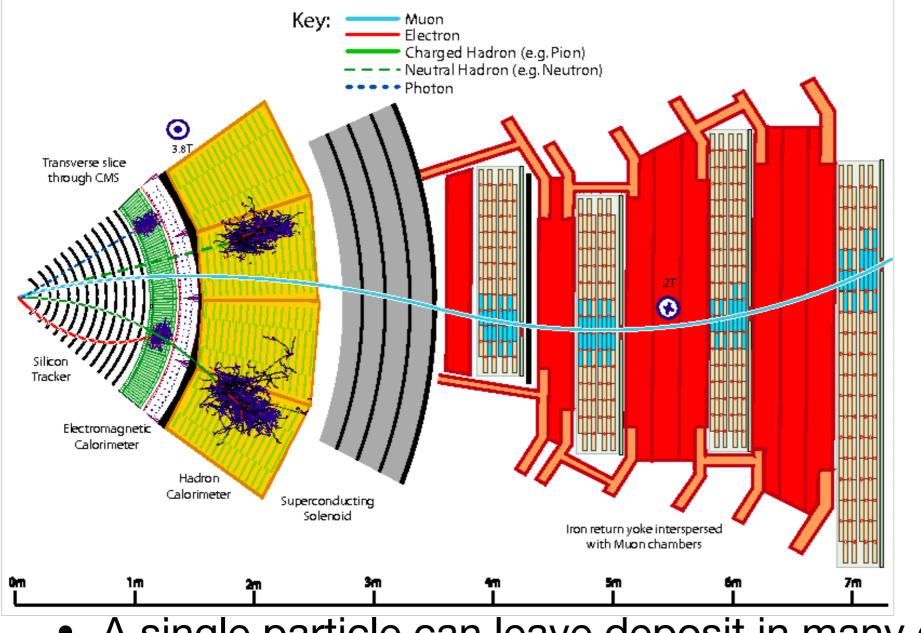
Energy ML at all Tiers will help to recover missing physics

Benchmark #2



Algo	Per Event	+On-site aaS	+Cloud aaS	Ping
CPU	1.75s	N/A	N/A	N/A
GPU Batch 1	7ms	23ms	97ms	75ms
GPU Batch 32	2ms	240ms	975ms	75ms
FPGA	1.7ms	15ms	60ms	25ms

In the detector

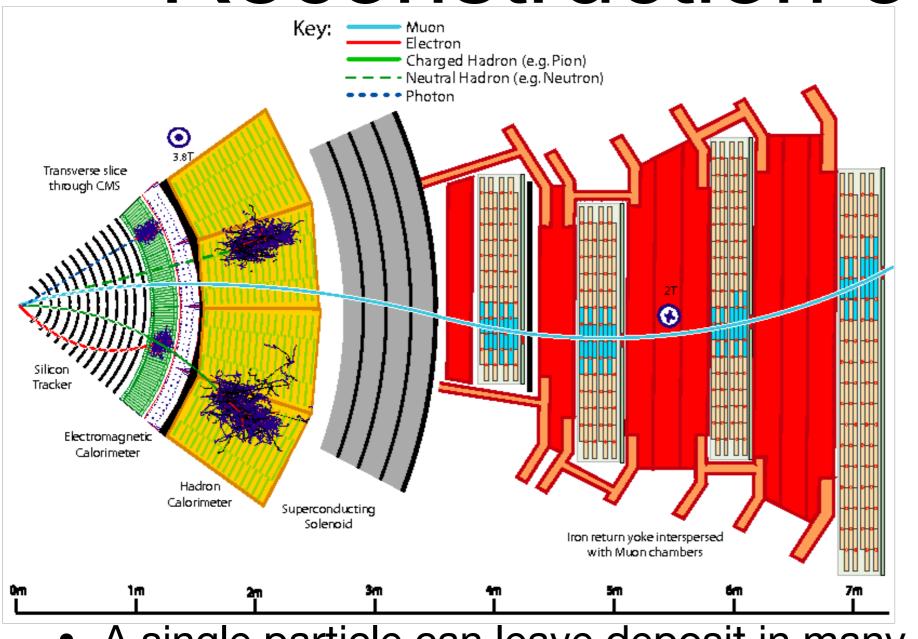


All reconstruction is separated on an event by event level

A single particle can leave deposit in many detectors

- Each detector deposit a complex and different topology
- Reconstruction of particles/detectors can be parallelized

Reconstruction of Objects



Batch 1 Per Event All reconstruction is separated on an event by event level

A single particle can leave deposit in many detectors

• Each detector deposit a complex and different topology

Batch N Per Particle

• Reconstruction of particles/detectors can be parallelized

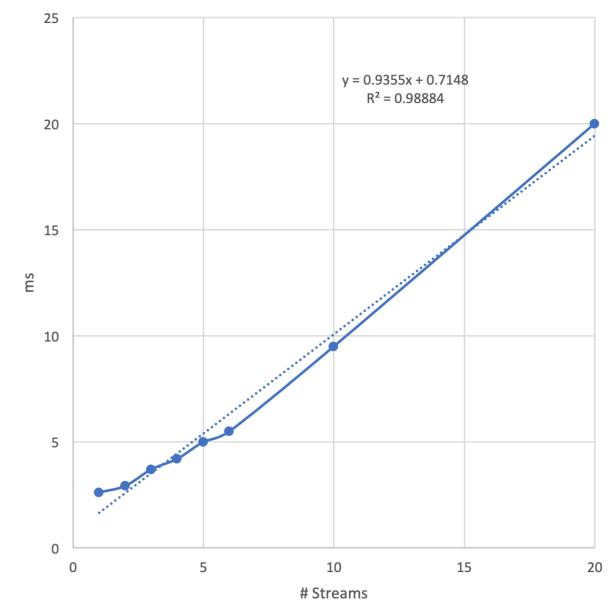
Xilinx ML Suite

• Consider Googlenet example

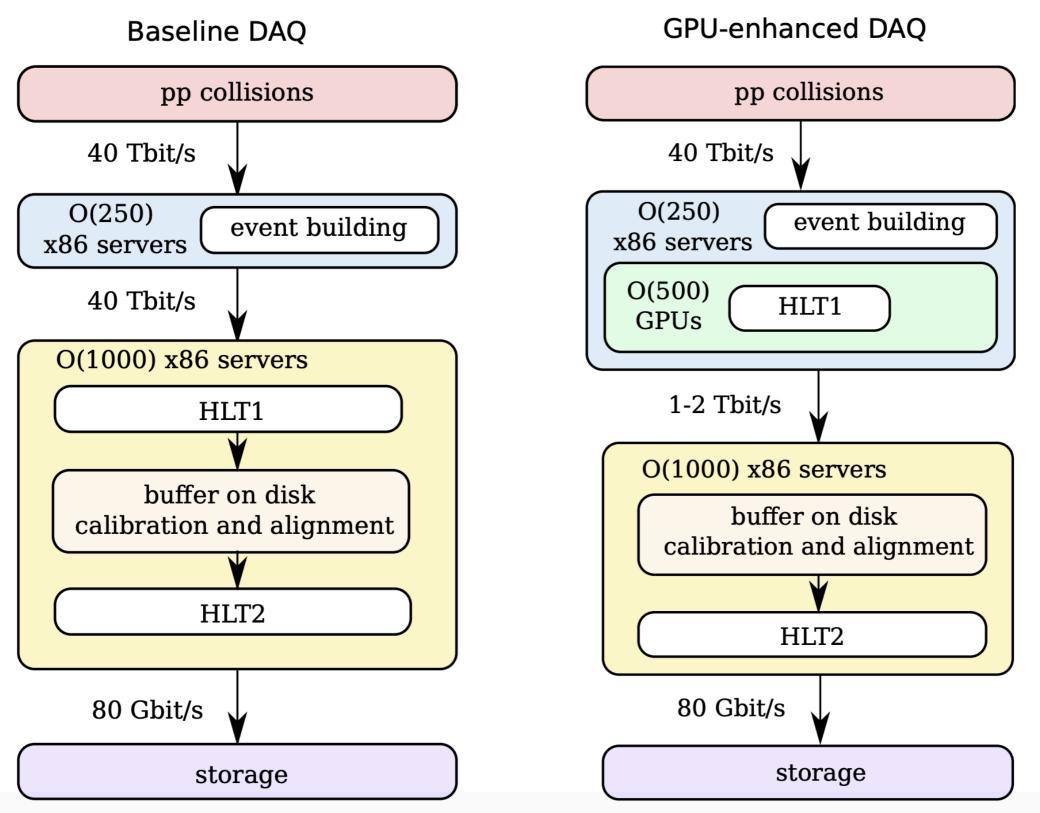
Throughput Rate

requests	avg	latency:	16.855598 ms
time	avg	latency:	2.07637 ms

images / s 300 # Streams Input Rate Max FPGA Throughput

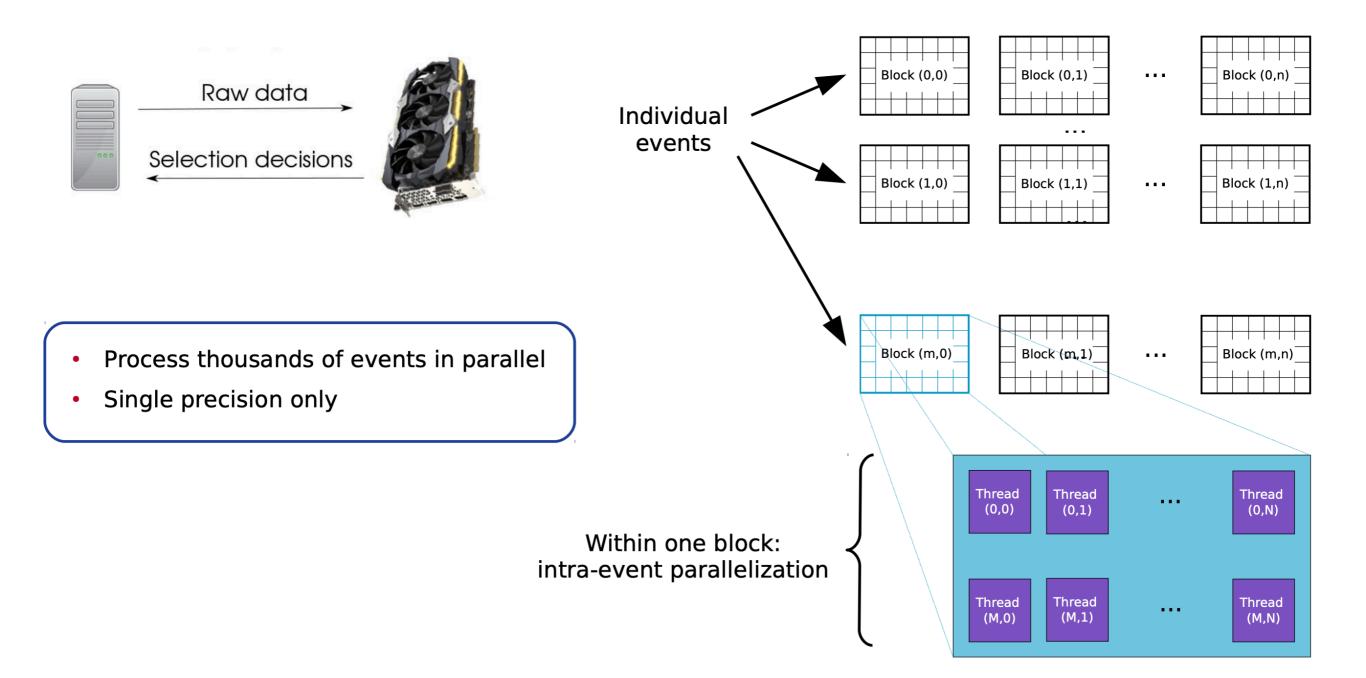


Alternative GPU Model

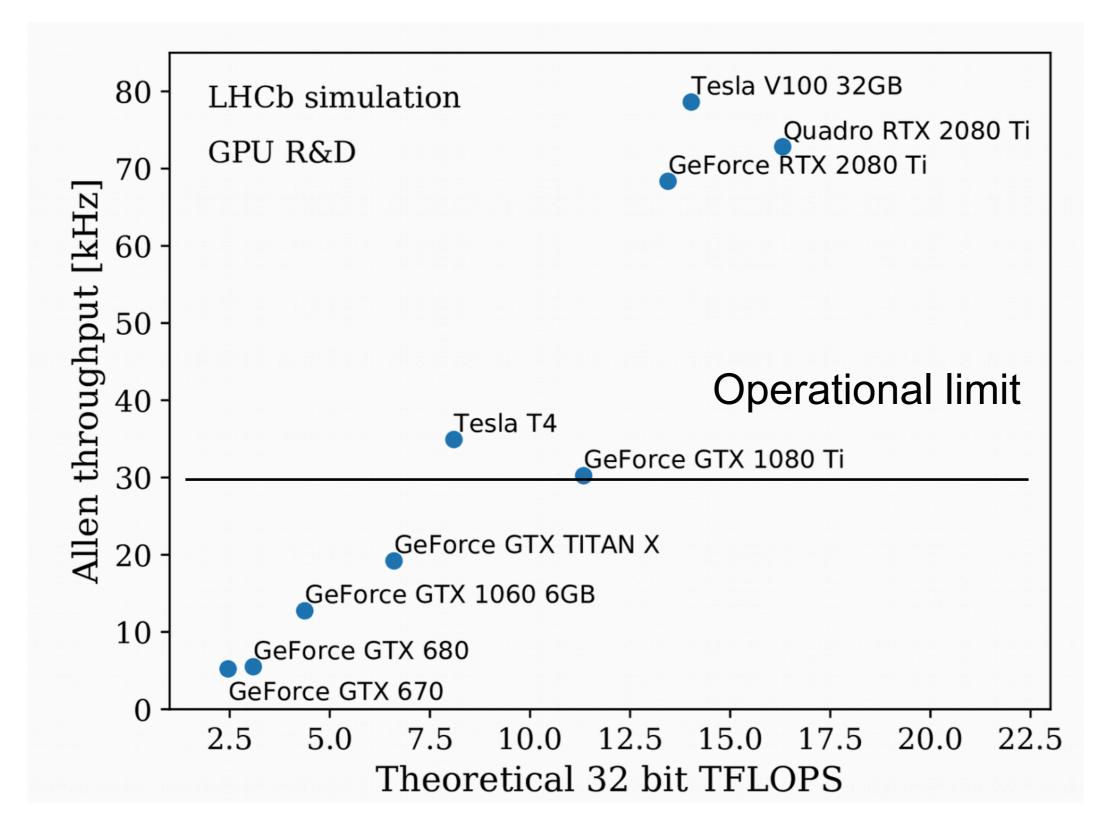


Full Reconstruction algorithm ported to GPU

Alternative GPU Model

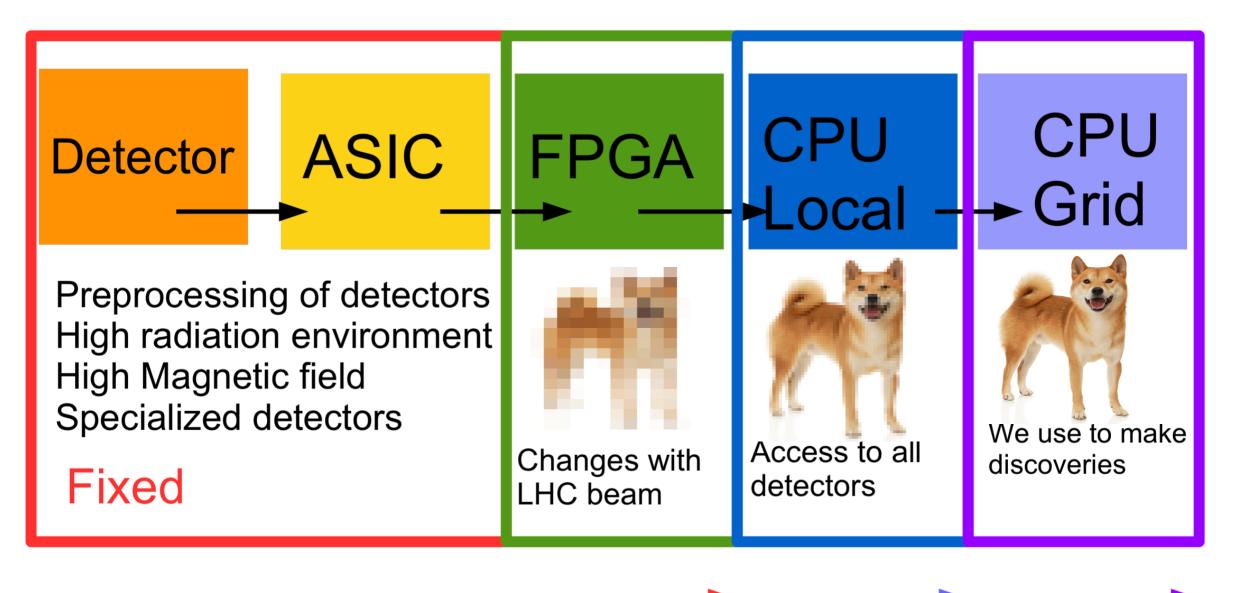


Alternative GPU Model



Another View of Same

Collision rate is 40 MHz A new collision every 25ns

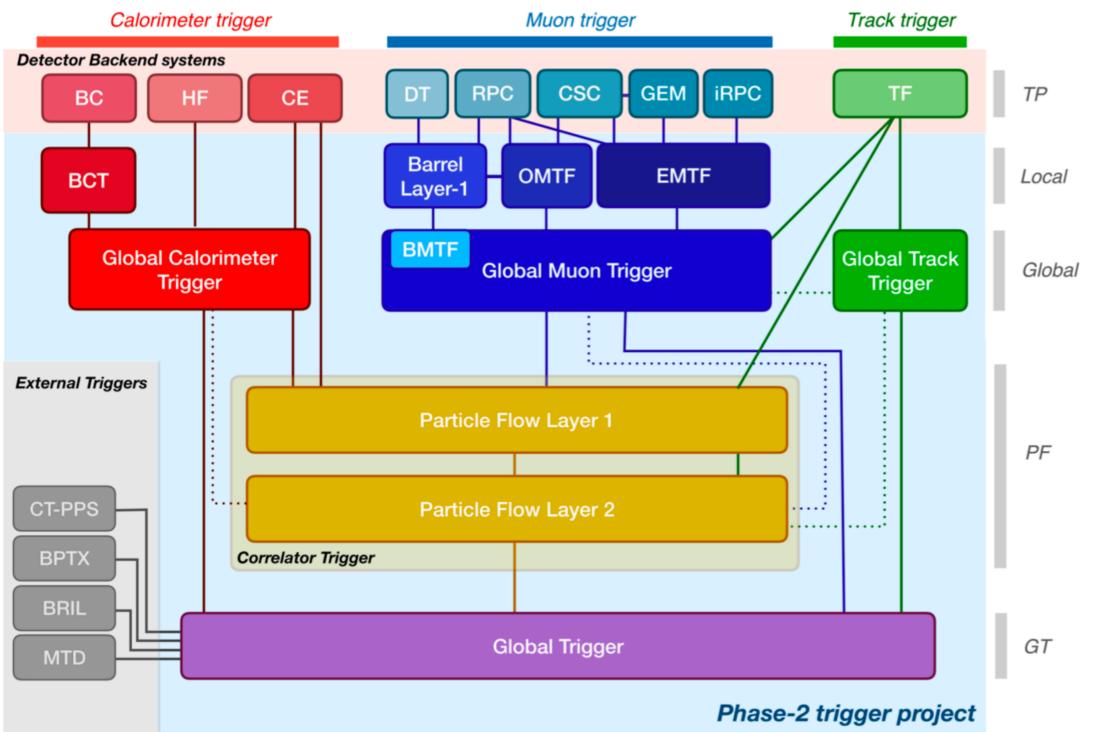


Latency : 10µs

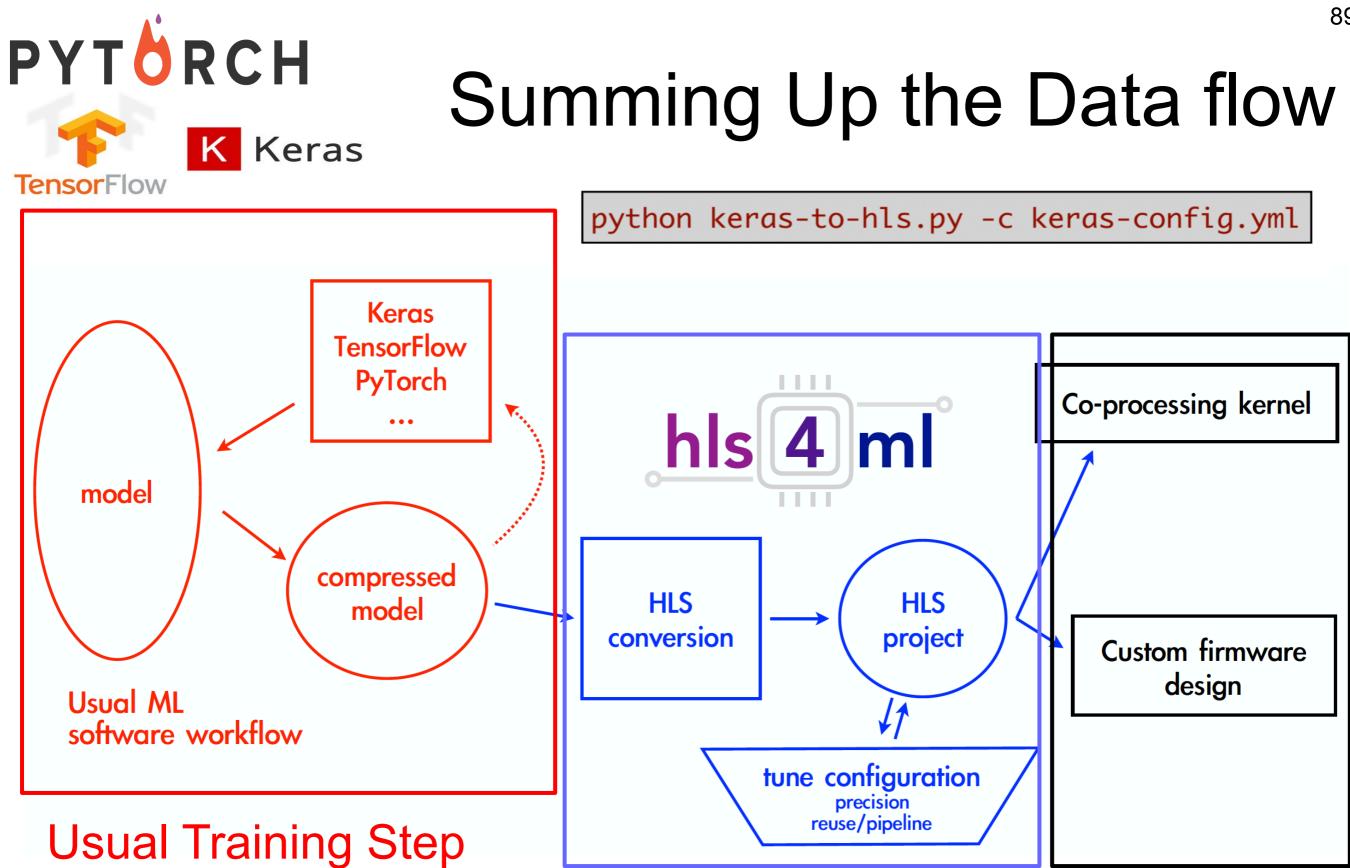
87

40 MHz (10µs)

Systems



Each Block represents O(30) FPGAs w/50 Tb/s bandwidth 1µs latency

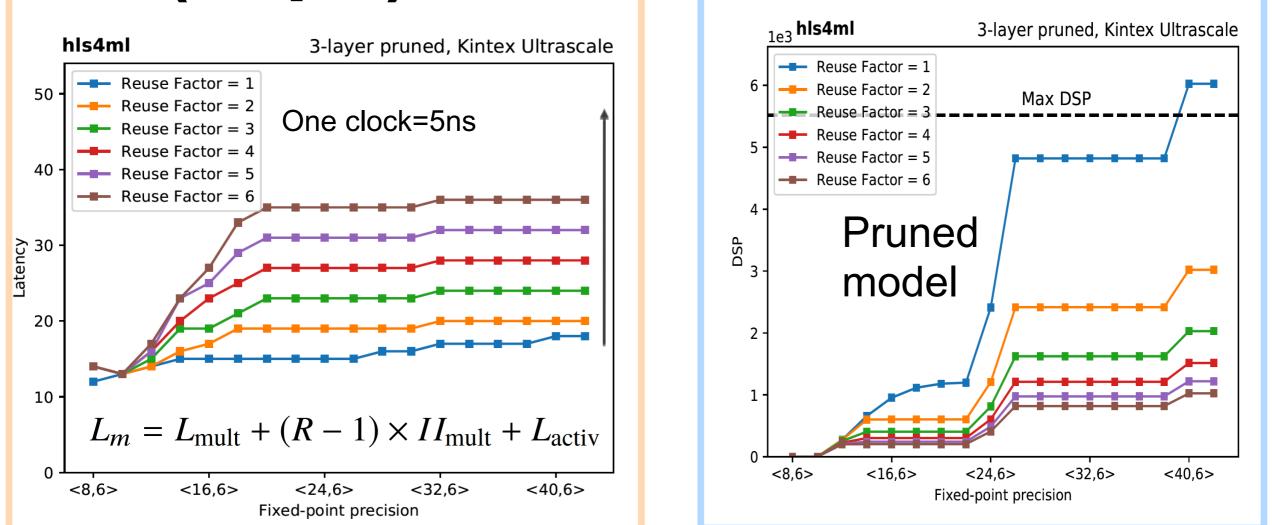


Targeting Ultra low latency applications

HLS tuning

Final Product

40 MHz (10μs) Example Performance



3-Layer NN 75ns latency with an II of 1

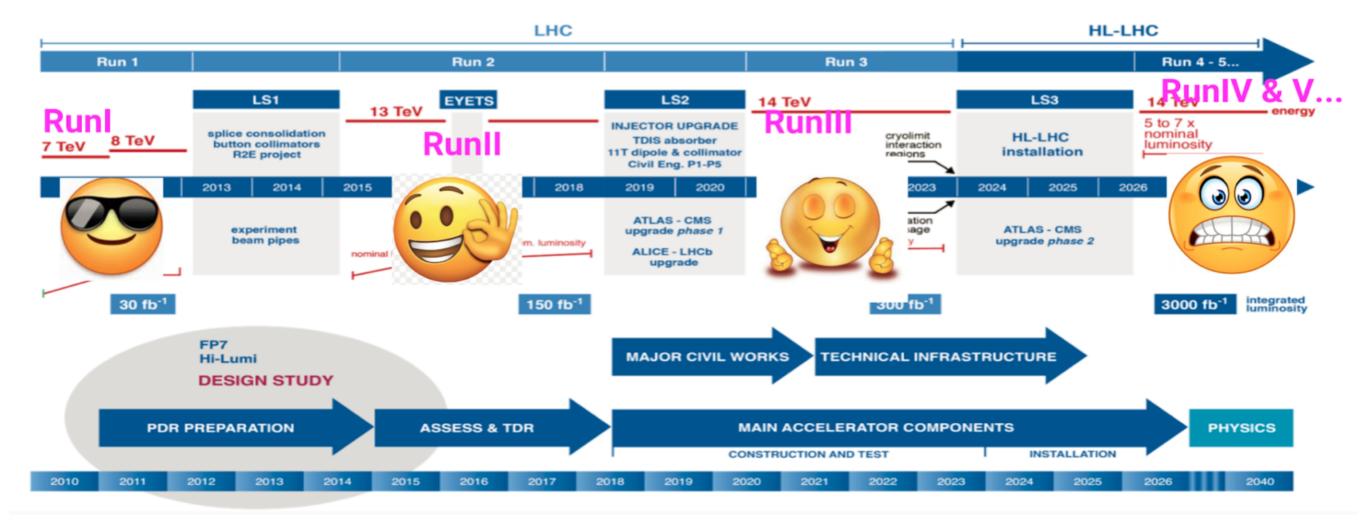
Latency (in clocks) gets worse With reuse factor Consistent with sharing resources

Tuneable reuse of DSPs and BRAM to get latency and II in ns timeslaes

What is a collision?

- LHC collides 60 protons at the same time
 - Eventually will become 200 protons at the same time
 - Collisions occur at 40 MHz
 - Expect roughly 1000(2000) particles per collision now(future)
 - Particles can leave deposits in many detectors
 - Aim to reconstruct aggregate properties of these collisions
- LHC Detector is roughly 100 Million channels
 - After zero suppression we have 8MB per collision

A More detailed View



· Data Box Edge: MS Databox Edge

A Microsoft *hardware-as-aservice solution* with an FPGA inside, installed at FNAL

```
iot_service = \
    IotWebservice.deploy_from_image(
        ws,
        iot_service_name,
        Image(ws, image_name),
        deploy_config,
        iothub_compute
        )
```

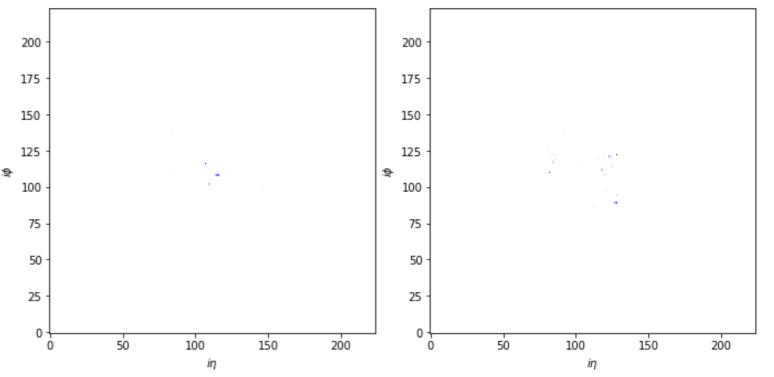

 Deploy pre-trained NNs using a CLI or a python SDK

```
    Inference from a 
client by sending 
data over gRPC
```

```
client = PredictionClient(
    address = address.fnal.gov, port = 50051,
    use_ssl = False,
    service_name = module_name
    )
result = client.score_numpy_arrays(
    input_map = {'Placeholder:0' : np_array}
    )
```

Jet Tagger Example

- Distinguish between top quarks and QCD using
 224x224 single-color images
 - Images: collected energy in the η/φ plane (detector coordinates)

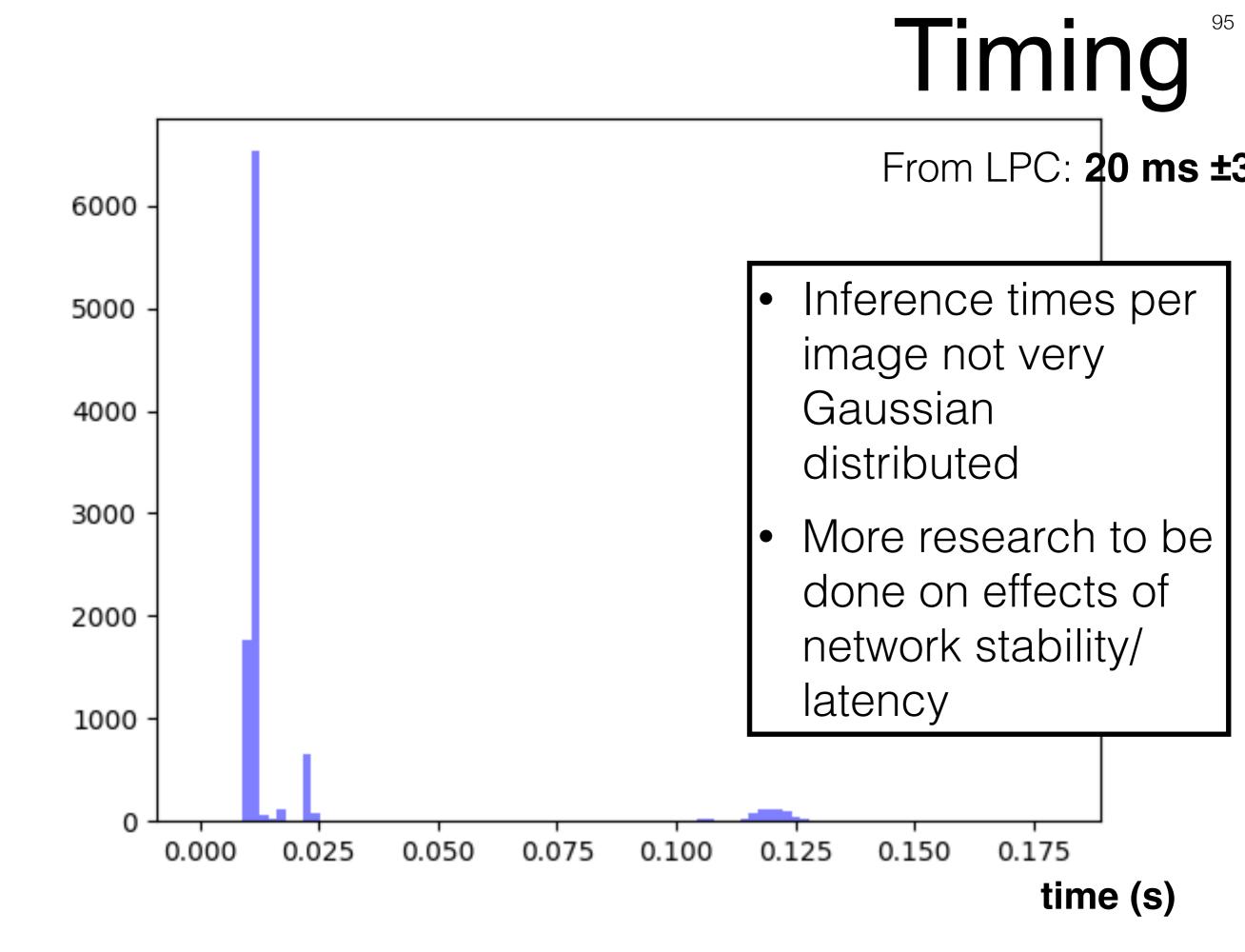


Previous inference results

- On a single CPU: ~500 ms
- On Azure Kubernetes Cloud Service: ~60-80 ms (depending on distance)
- Deployed at Azure Data Center in Viriginia (2018):
 ~10 ms

Using Data Box Edge

- Docker container directly on DBE: 14 ms ±25
- From LPC: **20 ms** ±*30*
- From laptop at FNAL: **68 ms** ±27
- From LXPLUS @ CERN: **168 ms** ±62



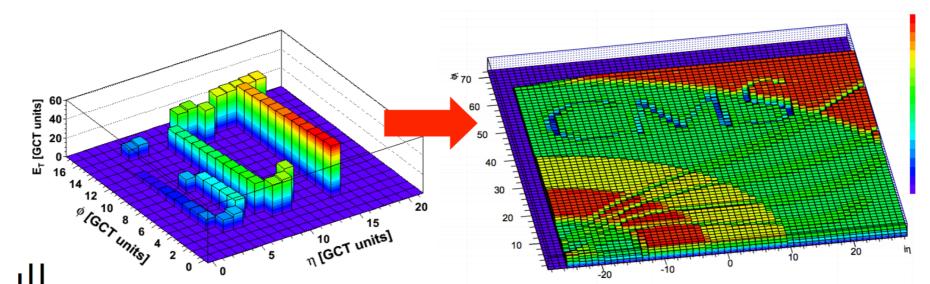
40 MHz (10µs)

Have to take a new event every 25ns

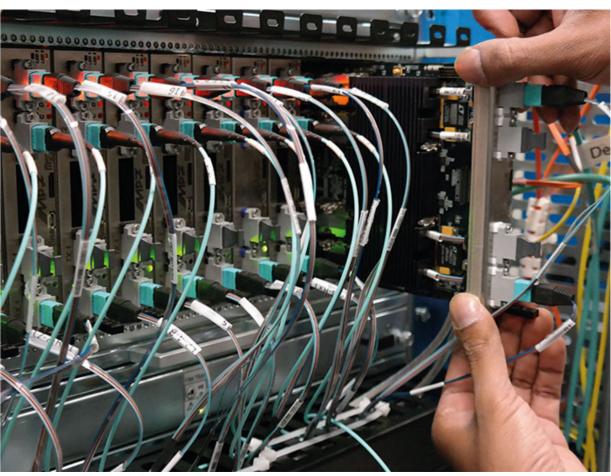
Interconnected FPGAs direct optical links between the chips 48-112 Links per chip Links run at 10-25 Gbps

Full system is O(1000) FPGAs

As FPGAs get larger so has the resolution of our detector



L1 Trigger



External Work in CMSSW (1)

Setup:

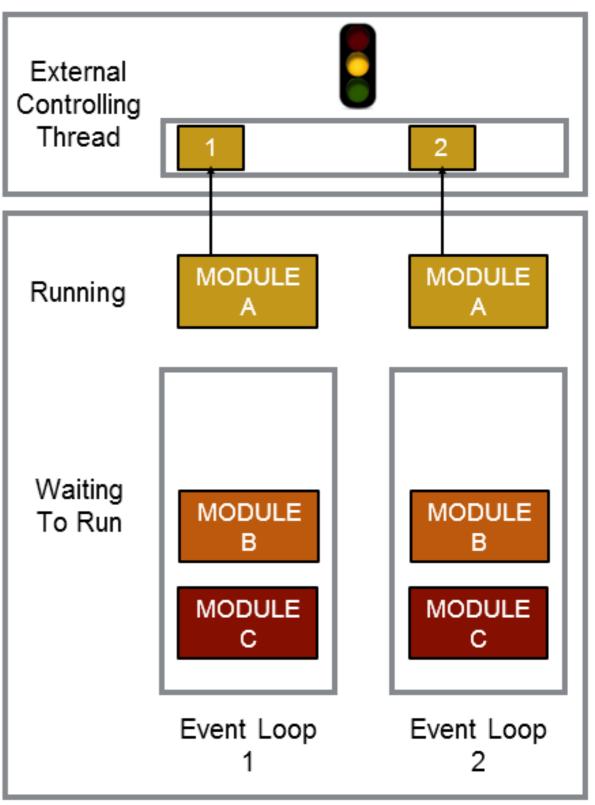
- TBB controls running modules
- Concurrent processing of multiple events
- Separate helper thread to control external
- Can wait until enough work is buffered before running external process

		-
External Controlling Thread		
Running		
Waiting To Run	MODULE A MODULE B	MODULE B MODULE C
	Event Loop 1	Event Loop 2

External Work in CMSSW (2)

Acquire:

- Module *acquire()* method called
- Pulls data from event
- Copies data to buffer
- Buffer includes callback to start next phase of module running



External Work in CMSSW (3)

Work starts:

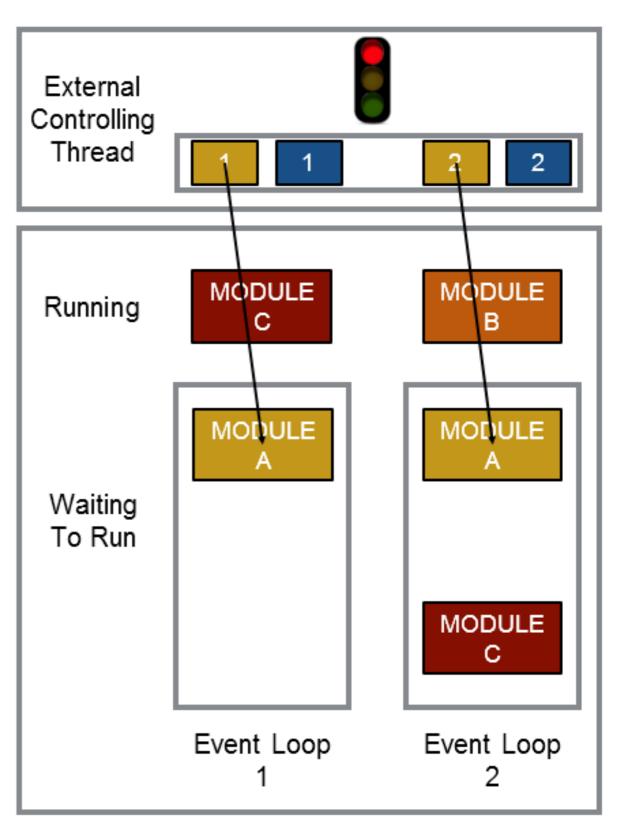
- External process runs
- Data pulled from buffer
- Next waiting modules can run (concurrently)

External Controlling Thread	1	2
Running	MODULE B	MODULE B
Waiting To Run	MODULE	MODULE
	Event Loop 1	Event Loop 2

External Work in CMSSW (4)

Work finishes:

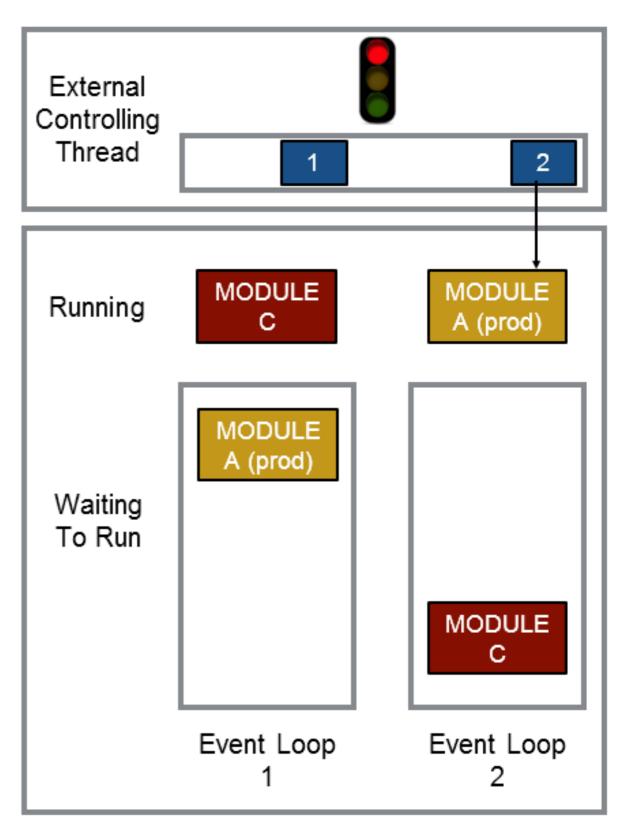
- Results copied to buffer
- Callback puts module back into queue



External Work in CMSSW (5)

Produce:

- Module *produce()* method is called
- Pulls results from buffer
- Data used to create objects to put into event



Sonic and Friends

