
HTCondor Architecture
HTCondor Week 2020

Todd Tannenbaum
Center for High Throughput Computing

Start with People

People have Problems

“My laptop will
take three years to
complete my
analysis, and I
want to submit a
paper in three
weeks”

“1,000x more
compute, could
revolutionize
my field”

“Some of my jobs
need a lot of
memory, others a
lot of cores”

“We pay a lot of
money for research
computing. I want
these computers
always busy,
helping research”

“If Physics invests
twice what
Chemistry does in
computers, they
should get 2x the
computing”

“If an important
group needs all the
computers for three
days to make a
paper deadline, I’m
ok with that”

Constraints

Constraints

HTCondor
Manages

These
constraints

Not even that easy
In the real world, many users,

Many resource providers

Distributed because of *people*
Not because of machines.
Our goal is to satisfy all these constraints.

This is a distributed problem.

To reliably run as much work as possible

on as many machines as possible

Subject to all constraints

The Philosophy on 1 slide

To maximize machine utilization
subject to constraints

High Throughput is also High Utilization Computing!

The other side: administrator’s

computing

“Work” can be broken up into smaller jobs
Smaller the better (up to a point)
files as ipc
any interdependencies via DAGs
Optimize time-to-finish

not time-to-run

*

The Unstated Assumption

Overview of condor:
3 sides

Submit
Execute

Central
Manager

We are going to fill in the boxes!

1414

Execute MachineSubmit Machine

Central Manager

ClassAds: The lingua franca of
HTCondor

15

ClassAds is a language for objects (jobs and
machines) to
Express attributes about themselves
Express what they require/desire in a “match”

(similar to personal classified ads)
Structure : Set of attribute name/value pairs,
where the value can be a literal or an
expression. Semi-structured, no fixed
schema.

What are ClassAds?

16

› Literals
Strings (“RedHat6”), integers, floats, boolean

(true/false), …
› Expressions
Similar look to C/C++ or Java : operators, references,

functions
References: to other attributes in the same ad, or

attributes in an ad that is a candidate for a match
Operators: +, -, *, /, <, <=,>, >=, ==, !=, &&, and || all

work as expected
Built-in Functions: if/then/else, string manipulation,

regular expression pattern matching, list operations,
dates, randomization, math (ceil, floor, quantize,…),
time functions, eval, …

ClassAd Values

1717

18

Job Ad
Type = "Job"
Requirements =

HasMatlabLicense
== True &&

Memory >= 1024
Rank = kflops + 1000000
* Memory

Cmd= "/bin/sleep"
Args = "3600"
Owner = "gthain"
NumJobStarts = 8
KindOfJob = "simulation"
Department = "Math"

Machine Ad
Type = "Machine"
Cpus = 40
Memory = 2048
Requirements =
(Owner == “gthain”) ||
(KindOfJob ==
“simulation”)

Rank = Department == "Math"
HasMatlabLicense = true
MaxTries = 4
kflops = 41403

Simple Example

› Two ClassAds can be matched via special
attributes: Requirements and Rank

› Two ads match if both their Requirements
expressions evaluate to True

› Rank evaluates to a float where higher is
preferred; specifies the which match is desired if
several ads meet the Requirements.

› Scoping of attribute references when matching
• MY.name – Value for attribute “name” in local ClassAd
• TARGET.name – Value for attribute “name” in match candidate

ClassAd
• Name – Looks for “name” in the local ClassAd, then the

candidate ClassAd

The Magic of Matchmaking

20

› HTCondor has many types of ClassAds
A "Job Ad" represents a job to Condor
A "Machine Ad" represents a computing

resource
Others types of ads represent other instances of

other services (daemons), users, accounting
records.

ClassAd Types

21

Architecture &
Job Startup

condor_master: runs on all machine, always
plus a condor_procd, condor_shared_port

condor_schedd: runs on submit machine

condor_startd: runs on execute machine

condor_negotiator, condor_collector: runs on
central manager

Quick Review of Daemons

23

Submit Machine Process View

24

condor_master
(pid: 1740)

condor_schedd

condor_shadow condor_shadow condor_shadow

fork/exec

fork/exec

condor_procd

Tools: condor_submit, condor_q,
condor_rm, condor_hold, …

condor_shared_port

Execute Machine Process View

25

condor_master
(pid: 1740)

condor_startd

condor_starter condor_starter condor_starter

fork/exec

Job Job Job

condor_procd

condor_shared_port

Central Manager Process View

26

condor_master
(pid: 1740)

condor_collector

fork/exec

condor_negotiator

condor_procd

condor_shared_port

27

Claiming Protocol

27

Execute MachineSubmit Machine

Submit

Schedd Startd

Central Manager

CollectorNegotiator

Q

J

S

Q

S

J

J S

J J SSCLAIM

28

Claim Activation

28

Execute MachineSubmit Machine

Schedd Startd

Central Manager

CollectorNegotiator

CLAIMED

Job

Shadow

Activate
Claim

Starter

29

Repeat until Claim released

29

Execute MachineSubmit Machine

Schedd Startd

Central Manager

CollectorNegotiator

CLAIMED

Job

Shadow

Activate
Claim

Starter

30

Repeat until Claim released

30

Execute MachineSubmit Machine

Schedd Startd

Central Manager

CollectorNegotiator

CLAIMED

Job

Shadow

Activate
Claim

Starter

› When relinquished by one of the following
lease on the claim is not renewed

• Why? Machine powered off, disappeared, etc
schedd

• Why? Out of jobs, shutting down, schedd didn’t “like” the
machine, etc

startd
• Why? Policy re CLAIM_WORKLIFE, prefers a different

match (via Rank), non-dedicated desktop, etc
negotiator

• Why? User priority inversion policy
explicitly via a command-line tool

• E.g. condor_vacate

When is claim released?

31

› Machines (startds) or submitters (schedds) can
dynamically appear and disappear
Key for expanding a pool into clouds or grids
Key for backfilling HPC resources

› Scheduling policy can be very flexible (custom
attributes) and very distributed

› Central manager just makes a match, then gets
out of the way

› Distributed policy enables federation of resources
across different organizations (administrative
domains)
Lots of network arrows on previous slides
Reflects the P2P nature of HTCondor

Architecture items to note

32

Submit-Only
master
schedd

33

Layout of a General Condor Pool
Central Manager

master

collector

negotiator

= ClassAd
Communication
Pathway

= Process Spawned

Submit-Only
master
schedd

Execute-Only
master

startd

Both!

schedd
startd

master

Execute-Only
master

startd

Thank You!

	HTCondor Architecture�HTCondor Week 2020��Todd Tannenbaum�Center for High Throughput Computing
	Start with People
	People have Problems
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	This is a distributed problem.
	The Philosophy on 1 slide
	The other side: administrator’s
	Slide Number 11
	The Unstated Assumption
	Overview of condor:�3 sides
	We are going to fill in the boxes!
	ClassAds: The lingua franca of HTCondor
	What are ClassAds?
	ClassAd Values�
	Slide Number 18
	The Magic of Matchmaking
	ClassAd Types
	Architecture & �Job Startup
	Quick Review of Daemons
	Submit Machine Process View
	Execute Machine Process View
	Central Manager Process View
	Claiming Protocol
	Claim Activation
	Repeat until Claim released
	Repeat until Claim released
	When is claim released?
	Architecture items to note
	Layout of a General Condor Pool
	Thank You!

