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Tamara Trials

Testing different design 
parameters for designing 

clinical trials.

Ben Bioinformatics

Applying a quality control / 
processing pipeline to 20 
RNA samples. 
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Multiple job goals
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Tamara Trials

Testing different design 
parameters for designing 

clinical trials.

Ben Bioinformatics

Applying a quality control / 
processing pipeline to 20 
RNA samples. 

TO AVOID:
- starting each job manually
- creating separate submit files for each job

https://github.com/carpentries/instructor-training/


Many jobs, one submit file

HTCondor has several built-in ways to submit 
multiple independent jobs from one submit file

to the rescue
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executable = analyze.sh
arguments  = file.in file.out
transfer_input_files = file.in

log    = job.log
output = job.stdout
error  = job.stderr

queue

Let’s review: one job

This is the command we 
want HTCondor to run. 
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executable = analyze.sh
arguments  = file.in file.out
transfer_input_files = file.in

log    = job.log
output = job.stdout
error  = job.stderr

queue

Let’s review: one job

These are the files we 
need for the job to run. 
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executable = analyze.sh
arguments  = file.in file.out
transfer_input_files = file.in

log    = job.log
output = job.stdout
error  = job.stderr

queue

Let’s review: one job

These files track 
information about the 
job. 
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Example 1: Many jobs with numbered files

Now suppose we have many input files and we want to run 
one job per input file. 

file.0.in
file.1.in

file.2.in
file.3.in

file.4.in

HTCondor Week 2020 11



List of numerical input values

We want to capture this set of inputs using a list of integers.

file.0.in
file.1.in

file.2.in
file.3.in

file.4.in
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executable = analyze.sh
arguments  = file.in file.out
transfer_input_files = file.in

log    = job.log
output = job.stdout
error  = job.stderr

queue 5

Provide a list of integer values with queue N

HTCondor Week 2020 13

This queue statement 
will generate a list of 
integers, 0 - 4



executable = analyze.sh
arguments  = file.in file.out
transfer_input_files = file.in

log    = job.log
output = job.stdout
error  = job.stderr

queue 5

Which job components vary? 

The arguments for our 
command and the input 
files would be different 
for each job.
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executable = analyze.sh
arguments  = file.in file.out
transfer_input_files = file.in

log    = job.log
output = job.stdout
error  = job.stderr

queue 5

Which job components vary? 

We might also want to 
differentiate these job 
files. 
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Use $(ProcID) as the variable

executable = analyze.sh
arguments  = file.$(ProcID).in file.$(ProcID).out
transfer_input_files = file$(ProcID).in

log    = job.$(ProcID).log
output = job.$(ProcID).stdout
error  = job.$(ProcID).stderr

queue 5
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The default variable 
representing the changing 
numbers in our list is 
$(ProcID)



Example 2: Many jobs with named files

• Program execution

• Files needed
• compare_states, state.wi.dat, country.us.dat

HTCondor Week 2020 17

executable = compare_states
arguments  = state.wi.dat out.state.wi.dat

transfer_input_files = state.wi.dat, country.us.dat

queue

$ compare_states state.wi.dat out.state.wi.dat



List of named input values

• Suppose we have data for several states: state.wi.dat, 
state.mn.dat, state.il.dat, etc. 

• We want to run one job per file. 

executable = compare_states
arguments  = state.wi.dat out.state.wi.dat

transfer_input_files = state.wi.dat, country.us.dat

queue
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Provide a list of values with queue from

• We want to use “queue” to provide this list of input files. 
• One option is to create another file with the list and 

use the queue .. from syntax. 

executable = compare_states
arguments  = state.wi.dat out.state.wi.dat

transfer_input_files = state.wi.dat, country.us.dat

queue from state_list.txt

state.wi.dat
state.mn.dat
state.il.dat
state.ia.dat
state.mi.dat
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Which job components vary? 

• Now, what parts of our job template (the top half of the submit file) 
vary, depending on the input? 

• We want to vary the job’s arguments and one input file.  

executable = compare_states
arguments  = state.wi.dat out.state.wi.dat

transfer_input_files = state.wi.dat, country.us.dat

queue state from state_list.txt
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Use a custom variable

• Replace all our varying components in the submit 
file with a variable.

executable = compare_states
arguments  = $(state) out.$(state)

transfer_input_files = $(state), country.us.dat

queue state from state_list.txt

state.wi.dat
state.mn.dat
state.il.dat
state.ia.dat
state.mi.dat
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Use multiple variables with queue from

• The queue from syntax can also support multiple values per job. 
• Suppose our command was like this: 

executable = compare_states
arguments  = -i $(state) -y $(year)

transfer_input_files = $(state), country.us.dat

queue state,year from state_list.txt

state.wi.dat,2010
state.wi.dat,2015 
state.mn.dat,2010
state.mn.dat,2015
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$ compare_states -i [input file] -y [year]



Variable and queue options

Syntax List of Values Variable Name

queue N Integers: 0 through N-1 $(ProcId)

queue Var matching pattern* List of values that match 
the wildcard pattern. $(Var) 

If no variable name is 
provided, default is 
$(Item)

queue Var in (item1 item2 …) List of values within 
parentheses. 

queue Var from list.txt List of values from list.txt, 
where each value is on its 
own line. 
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Other options: queue N

• Can I start from 1 instead of 0? 
• Yes! These two lines increment the $(ProcId) variable

• You would use the second variable name $(newProc) in your submit file

• Can I create a certain number of digits (i.e. 000, 001 instead of 0,1)? 
• Yes, this syntax will make $(ProcId) have a certain number of digits

tempProc = $(ProcId) + 1
newProc = $INT(tempProc)

$INT(ProcId,%03)
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Other options: queue in / from/matching

• You can run multiple jobs per list item, using $(Step) as the index:

• queue matching has options to select only files or directories

queue inp matching files *.dat

queue inp matching dirs job*
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executable = analyze.sh
arguments  = -input $(infile) -index $(Step)

queue 10 infile matching *.dat



Case Study 1

• What varies? 
• Not much – just needs an index to keep simulation 

results separate. 

• Use queue N
• Simple, built-in
• No need for specific input values
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Mei Monte Carlo

Needs to run many random 
simulations to model 
particles in a detector



Case Study 2 

• What varies? 
• Five parameter combinations per job
• Parameters are given as arguments to the

executable

• Use queue from
• queue from can accommodate multiple values per 

job
• Easy to re-run combinations that fail by using 

subset of original list
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Tamara Trials

Testing different design 
parameters for designing 

clinical trials.



Case Study 3 

• What varies? 
• Each job analyzes one sample; each sample consists

of two fastq files in a folder with a standard prefix. 
• Use queue matching

• Folders have a standard prefix, input files have 
standard suffix, easy to pattern match

• Good alternative: queue from
• Provide list of folder names/file prefixes, construct 

paths in the submit file. 
• Want output files to return to the same folder 

(stay tuned…)
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Ben Bioinformatics

Applying a quality control / 
processing pipeline to 20 
RNA samples. 



Queue options, pros and cons
queue N Simple, good for multiple jobs that only require a numerical index. 

queue 
matching 
pattern*

Natural nested looping, minimal programming, use optional “files” 
and “dirs” keywords to only match files or directories
Requires good naming conventions. 

queue in 
(list)

Supports multiple variables, all information contained in a single 
file, reproducible
Harder to automate submit file creation

queue from  
file

Supports multiple variables, highly modular (easy to use one 
submit file for many job batches), reproducible
Additional file needed
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Organization

Many jobs means many files.
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Directories are your friends

executable = analyze.sh
transfer_input_files = input/file$(ProcID).in,

shared/

log    = logs/job.$(ProcID).log
output = output/job.$(ProcID).stdout
error  = error/job.$(ProcID).stderr

queue 5

submit_dir/
jobs.submit
analyze.sh
shared/
script1.sh
reference.dat

input/
file0.in
...

logs/
job.0.log
...

output/
job.0.stdout
...

error/
job.0.stderr
...
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Job-specific directories with initialdir

executable = analyze.sh
transfer_input_files = file.in
initialdir = job$(ProcId)

output = job.stdout
error  = job.stderr

queue 5

submit_dir/
jobs.submit
analyze.sh
job0/
file.in
job.stdout
job.stderr

job1/
file.in
job.stdout
job.stderr

job2/
...
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Use variables, move output files

infile = file$(ProcID).in
outfile = file$(ProcID).out

executable            = analyze.sh
arguments             = $(infile) $(outfile)

transfer_input_files = input/$(infile)
transfer_output_files = $(outfile)
transfer_output_remaps = “$(outfile)=output/$(outfile)”

queue 5

submit_dir/
jobs.submit
analyze.sh
input/
file0.in
...

output/
file0.out
...
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Resources

• Example jobs and submit files: 
• https://github.com/CHTC/example-multiple-jobs

• condor_submit documentation: 
• https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html
• Search for “queue”

• HTCondor user tutorial
• https://agenda.hep.wisc.edu/event/1325/session/0/contribution/19/material

/slides/0.pdf
• Advanced submit talk

• https://agenda.hep.wisc.edu/event/1325/session/3/contribution/40/material
/slides/0.pptx
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https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html


Questions?
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