
Submitting Multiple Jobs
With HTCondor

Christina Koch
HTCondor Week 2020

Why multiple jobs?

HTCondor Week 2020 2

Why multiple jobs?

HTCondor Week 2020 3

Mei Monte Carlo

Needs to run many random
simulations to model
particles in a detector

Image credit: The Carpentries Instructor Training

https://github.com/carpentries/instructor-training/

Why multiple jobs?

HTCondor Week 2020 4

Mei Monte Carlo

Needs to run many random
simulations to model
particles in a detector

Image credit: The Carpentries Instructor Training

Tamara Trials

Testing different design
parameters for designing

clinical trials.

https://github.com/carpentries/instructor-training/

Why multiple jobs?

HTCondor Week 2020 5

Mei Monte Carlo

Needs to run many random
simulations to model
particles in a detector

Image credit: The Carpentries Instructor Training

Tamara Trials

Testing different design
parameters for designing

clinical trials.

Ben Bioinformatics

Applying a quality control /
processing pipeline to 20
RNA samples.

https://github.com/carpentries/instructor-training/

Multiple job goals

HTCondor Week 2020 6

Mei Monte Carlo

Needs to run many random
simulations to model
particles in a detector

Image credit: The Carpentries Instructor Training

Tamara Trials

Testing different design
parameters for designing

clinical trials.

Ben Bioinformatics

Applying a quality control /
processing pipeline to 20
RNA samples.

TO AVOID:
- starting each job manually
- creating separate submit files for each job

https://github.com/carpentries/instructor-training/

Many jobs, one submit file

HTCondor has several built-in ways to submit
multiple independent jobs from one submit file

to the rescue

HTCondor Week 2020 7

executable = analyze.sh
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.stdout
error = job.stderr

queue

Let’s review: one job

This is the command we
want HTCondor to run.

HTCondor Week 2020 8

executable = analyze.sh
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.stdout
error = job.stderr

queue

Let’s review: one job

These are the files we
need for the job to run.

HTCondor Week 2020 9

executable = analyze.sh
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.stdout
error = job.stderr

queue

Let’s review: one job

These files track
information about the
job.

HTCondor Week 2020 10

Example 1: Many jobs with numbered files

Now suppose we have many input files and we want to run
one job per input file.

file.0.in
file.1.in

file.2.in
file.3.in

file.4.in

HTCondor Week 2020 11

List of numerical input values

We want to capture this set of inputs using a list of integers.

file.0.in
file.1.in

file.2.in
file.3.in

file.4.in

HTCondor Week 2020 12

executable = analyze.sh
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.stdout
error = job.stderr

queue 5

Provide a list of integer values with queue N

HTCondor Week 2020 13

This queue statement
will generate a list of
integers, 0 - 4

executable = analyze.sh
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.stdout
error = job.stderr

queue 5

Which job components vary?

The arguments for our
command and the input
files would be different
for each job.

HTCondor Week 2020 14

executable = analyze.sh
arguments = file.in file.out
transfer_input_files = file.in

log = job.log
output = job.stdout
error = job.stderr

queue 5

Which job components vary?

We might also want to
differentiate these job
files.

HTCondor Week 2020 15

Use $(ProcID) as the variable

executable = analyze.sh
arguments = file.$(ProcID).in file.$(ProcID).out
transfer_input_files = file$(ProcID).in

log = job.$(ProcID).log
output = job.$(ProcID).stdout
error = job.$(ProcID).stderr

queue 5

HTCondor Week 2020 16

The default variable
representing the changing
numbers in our list is
$(ProcID)

Example 2: Many jobs with named files

• Program execution

• Files needed
• compare_states, state.wi.dat, country.us.dat

HTCondor Week 2020 17

executable = compare_states
arguments = state.wi.dat out.state.wi.dat

transfer_input_files = state.wi.dat, country.us.dat

queue

$ compare_states state.wi.dat out.state.wi.dat

List of named input values

• Suppose we have data for several states: state.wi.dat,
state.mn.dat, state.il.dat, etc.

• We want to run one job per file.

executable = compare_states
arguments = state.wi.dat out.state.wi.dat

transfer_input_files = state.wi.dat, country.us.dat

queue

HTCondor Week 2020 18

Provide a list of values with queue from

• We want to use “queue” to provide this list of input files.
• One option is to create another file with the list and

use the queue .. from syntax.

executable = compare_states
arguments = state.wi.dat out.state.wi.dat

transfer_input_files = state.wi.dat, country.us.dat

queue from state_list.txt

state.wi.dat
state.mn.dat
state.il.dat
state.ia.dat
state.mi.dat

HTCondor Week 2020 19

Which job components vary?

• Now, what parts of our job template (the top half of the submit file)
vary, depending on the input?

• We want to vary the job’s arguments and one input file.

executable = compare_states
arguments = state.wi.dat out.state.wi.dat

transfer_input_files = state.wi.dat, country.us.dat

queue state from state_list.txt

HTCondor Week 2020 20

Use a custom variable

• Replace all our varying components in the submit
file with a variable.

executable = compare_states
arguments = $(state) out.$(state)

transfer_input_files = $(state), country.us.dat

queue state from state_list.txt

state.wi.dat
state.mn.dat
state.il.dat
state.ia.dat
state.mi.dat

HTCondor Week 2020 21

Use multiple variables with queue from

• The queue from syntax can also support multiple values per job.
• Suppose our command was like this:

executable = compare_states
arguments = -i $(state) -y $(year)

transfer_input_files = $(state), country.us.dat

queue state,year from state_list.txt

state.wi.dat,2010
state.wi.dat,2015
state.mn.dat,2010
state.mn.dat,2015

HTCondor Week 2020 22

$ compare_states -i [input file] -y [year]

Variable and queue options

Syntax List of Values Variable Name

queue N Integers: 0 through N-1 $(ProcId)

queue Var matching pattern* List of values that match
the wildcard pattern. $(Var)

If no variable name is
provided, default is
$(Item)

queue Var in (item1 item2 …) List of values within
parentheses.

queue Var from list.txt List of values from list.txt,
where each value is on its
own line.

HTCondor Week 2020 23

Other options: queue N

• Can I start from 1 instead of 0?
• Yes! These two lines increment the $(ProcId) variable

• You would use the second variable name $(newProc) in your submit file

• Can I create a certain number of digits (i.e. 000, 001 instead of 0,1)?
• Yes, this syntax will make $(ProcId) have a certain number of digits

tempProc = $(ProcId) + 1
newProc = $INT(tempProc)

$INT(ProcId,%03)

HTCondor Week 2020 24

Other options: queue in / from/matching

• You can run multiple jobs per list item, using $(Step) as the index:

• queue matching has options to select only files or directories

queue inp matching files *.dat

queue inp matching dirs job*

HTCondor Week 2020 25

executable = analyze.sh
arguments = -input $(infile) -index $(Step)

queue 10 infile matching *.dat

Case Study 1

• What varies?
• Not much – just needs an index to keep simulation

results separate.

• Use queue N
• Simple, built-in
• No need for specific input values

HTCondor Week 2020 26

Mei Monte Carlo

Needs to run many random
simulations to model
particles in a detector

Case Study 2

• What varies?
• Five parameter combinations per job
• Parameters are given as arguments to the

executable

• Use queue from
• queue from can accommodate multiple values per

job
• Easy to re-run combinations that fail by using

subset of original list

HTCondor Week 2020 27

Tamara Trials

Testing different design
parameters for designing

clinical trials.

Case Study 3

• What varies?
• Each job analyzes one sample; each sample consists

of two fastq files in a folder with a standard prefix.
• Use queue matching

• Folders have a standard prefix, input files have
standard suffix, easy to pattern match

• Good alternative: queue from
• Provide list of folder names/file prefixes, construct

paths in the submit file.
• Want output files to return to the same folder

(stay tuned…)

HTCondor Week 2020 28

Ben Bioinformatics

Applying a quality control /
processing pipeline to 20
RNA samples.

Queue options, pros and cons
queue N Simple, good for multiple jobs that only require a numerical index.

queue
matching
pattern*

Natural nested looping, minimal programming, use optional “files”
and “dirs” keywords to only match files or directories
Requires good naming conventions.

queue in
(list)

Supports multiple variables, all information contained in a single
file, reproducible
Harder to automate submit file creation

queue from
file

Supports multiple variables, highly modular (easy to use one
submit file for many job batches), reproducible
Additional file needed

HTCondor Week 2020 29

Organization

Many jobs means many files.
HTCondor Week 2020 30

Directories are your friends

executable = analyze.sh
transfer_input_files = input/file$(ProcID).in,

shared/

log = logs/job.$(ProcID).log
output = output/job.$(ProcID).stdout
error = error/job.$(ProcID).stderr

queue 5

submit_dir/
jobs.submit
analyze.sh
shared/
script1.sh
reference.dat

input/
file0.in
...

logs/
job.0.log
...

output/
job.0.stdout
...

error/
job.0.stderr
...

HTCondor Week 2020 31

Job-specific directories with initialdir

executable = analyze.sh
transfer_input_files = file.in
initialdir = job$(ProcId)

output = job.stdout
error = job.stderr

queue 5

submit_dir/
jobs.submit
analyze.sh
job0/
file.in
job.stdout
job.stderr

job1/
file.in
job.stdout
job.stderr

job2/
...

HTCondor Week 2020 32

Use variables, move output files

infile = file$(ProcID).in
outfile = file$(ProcID).out

executable = analyze.sh
arguments = $(infile) $(outfile)

transfer_input_files = input/$(infile)
transfer_output_files = $(outfile)
transfer_output_remaps = “$(outfile)=output/$(outfile)”

queue 5

submit_dir/
jobs.submit
analyze.sh
input/
file0.in
...

output/
file0.out
...

HTCondor Week 2020 33

Resources

• Example jobs and submit files:
• https://github.com/CHTC/example-multiple-jobs

• condor_submit documentation:
• https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html
• Search for “queue”

• HTCondor user tutorial
• https://agenda.hep.wisc.edu/event/1325/session/0/contribution/19/material

/slides/0.pdf
• Advanced submit talk

• https://agenda.hep.wisc.edu/event/1325/session/3/contribution/40/material
/slides/0.pptx

HTCondor Week 2020 34

https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html

Questions?

HTCondor Week 2020 35

