
Use of master-worker and
integration with OSG Connect

Roman Zubatyuk

Department of Chemistry
Carnegie Mellon University

• Traditional quantum mechanics: Slow calculations, one molecule at a time

• QSAR: Statistical modeling of historical experimental data

• Now we could use accumulated historical QM data to train a statistical models that can accurately
predict results of quantum mechanics

Property

QM

Supervised machine learning on quantum-chemical data

Database of calculated QM
energies and properties for
50M molecules

Unique
Molecular

Representation

Predicted QM
Energy &

Properties

ML

J. Smith, O. Isayev, A. Roitberg. Chem. Sci., 2017, 8, 3192-3203

Fast, accurate, transferable and extensible neural network potentials

Smith, Justin S., Olexandr Isayev, and Adrian E. Roitberg. "ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost." Chemical science 8.4
(2017): 3192-3203.
Smith, Justin S., et al. "Less is more: Sampling chemical space with active learning." The Journal of chemical physics 148.24 (2018): 241733.
Smith, Justin S., et al. "Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning." Nature communications 10.1 (2019): 2903.
Zubatyuk, Roman et al., “Accurate and Transferable Multitask Prediction of Chemical Properties with an Atoms-in-Molecules Neural Network.” Sci. Adv. 2019, 5 (8), eaav6490.

ANI1: 20M DFT calculations (CHNO)
ANI-1x: 5M DFT calculations (CHNO)
ANI-1ccx: 0.5M CCSD(T)/CBS (CHNO)
ANI-2x, AIMNet: 9M DFT calculations (CHNOSFCl)

Current development: more chemical elements, charged molecules.

Our computational tasks

• DFT calculations for small molecules (ORCA)

• Semiempirical molecular dynamics (XTB)

• Molecular docking (AutoDock Vina)

• ~ 104 – 106 tasks

• Short (20s - 2h CPU time)

• Small input size (1 – 100 kb)

• Portable software stack

=> Ideal for OSG
“Free” opportunistic computational resource
Single core, small memory, small disk, short run time.

Standard workflow
• Create inputs for tasks, transfer to submit host.
• Transfer to submit host
• Write job execution script
• Submit to Condor (or SLURM)
• Wait

Master-worker workflow
• Put tasks to a master database.
• Write script to perform single task
• Launch workers what execute tasks.
• Workers communicate with the master (get task, put results)

Data are organized, tasks are independent, computer resource use is efficient
Easy to use

~ 106 tasks

group several tasks together: all done or all fail

• Resubmit failed tasks

Master-worker implementation

• Message queue database (message == task)

• Consumers execute tasks (each message should be delivered only once)

• Implemented RQ (Redis Queue) Python library
• Other alternatives are Celery, Huey2, Dramatiq, Ray, Uber Cherami, and many more.

• We did not re-invented the wheel. We made a wheel without bells and whistles
that fits our vehicle:

• RQ is simple, scalable and customizable

• RQ workers need very basic environment

• Tasks are simple Python functions

• Single-user environment

Task life cycle

MongoDB

RQ Submit

Collect

Redis

Worker
Worker

Worker
Worker

Worker

• get MongoDB records
• create RQ jobs

• get completed RQ jobs
• write results to MongoDB
• sleep
• repeat

➢ configure environment
(application software)

• get next job from Redis || die
• get extra job data from Redis
• execute job
• parse results
• return results
• repeat

User interface:
• Put data to MongoDB
• rq_submit <query> <job function name> <parameters>
• rq info for status of jobs and workers
• Find results in MongoDB

Condor
Submit

• if jobs in Redis and few Condor jobs:
• ssh osgconnect condor_submit

• sleep
• repeat

Job definition file
campaign: wb97mv

campaign_config:
func_name: htrq.htrun.scripts.orca.sequential
job_timeout: 15000
args:

- name: wb97md3bj
route: |

! wB97m-d3bj def2-tzvpp def2/j rijcosx engrad tightscf
%elprop dipole true quadrupole true end
%output PrintLevel mini Print[P_DFTD_GRAD] 1 end
%scf maxiter 256 end

parsers:
stdout:
- htrq.htrun.parser.orca.total_energy
- htrq.htrun.parser.orca.gradient
- htrq.htrun.parser.orca.dipole

keep_files:
stdout: '{id}_wb97md3bj.out'
orca.gbw: '{id}_wb97md3bj.gbw’

kwargs:
mongo_output_key: wb97mv

submit:
query:
wb97mv.wb97md3bj: null

projection: []
queue: orca:high

<- job function (run ORCA)

<- what to compute (energy & gradient)

<- how to store results in MongoDB

<- how to select and submit jobs

<- some results could be stored on file system instead of MongoDB

<- how to parse data

RQ job data
• Database, ID

• Input data (coordinates of atoms, etc.)

• Job Python function (e.g. DFT energy + gradient calculation)

• Redis key containing parameters of job function (e.g. DFT functional and basis set)

=> Unique job ID

• Python 3.5+ (OCG Connect CVMFS)

• python-rq and python code to execute task (OSG Connect Stash < 10 MB)

• Application software binaries (OSG Connect Stash < 500 MB)

Worker environment

Performance of RQ

• MongoDB, Redis, submit and collect scripts on a single mid-grade
workstation (i7, 32GB RAM)

• 10M tasks in Redis Queue
• 10,000 workers at a time (probably, could be few times more)
• 100 jobs/sec
• 1 Gbps sustained incoming network traffic to Redis

About 20 M CPU core hours consumed on OSG, XSEDE and
TACC Frontera with same RQ-based framework!

Acknowledgements

CHE-1802789

Funding:

HPC Computing:

