
What’s new in HTCondor?
What’s coming?

Todd Tannenbaum
Center for High Throughput Computing

Department of Computer Sciences
University of Wisconsin-Madison

2

(and HTCondor Week 2020!)

5

Release Series
› Stable Series (bug fixes only)
HTCondor v8.8.x – first introduced Jan 2019

(Currently at v8.8.9)
› Development Series (should be 'new features'

series)
HTCondor v8.9.x (Currently at v8.9.7)

› Since July 2019…
Public Releases: 8
Documented enhancements: ~98
Documented bug fixes: ~148

› Detailed Version History in the Manual
 https://htcondor.readthedocs.io/en/latest/version-history/

What's new in v8.8 and/or
cooking for v8.9 and beyond?

6

7

HTCondor v8.9.x
Removes Support for:

› Goodbye RHEL/Centos 6 Support
› Goodbye Quill
› Goodbye "Standard" Universe
Instead self-checkpoint vanilla job support [1]

› Goodbye SOAP API
So what API beyond the command-line?

7

[1] https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=HowToRunSelfCheckpointingJobs

API Enhancements: Python, REST

8

› Bring HTC into Python environments incl Jupyter
› HTCondor Bindings (import htcondor) are

steeped in the HTCondor ecosystem
Exposed to concepts like Schedds, Collectors,

ClassAds, jobs, transactions to the Schedd, etc
› Added new Python APIs: DAGMan submission,

credential management (i.e. Kerberos/Tokens)
› Initial integration with Dask
› Released our HTMap package
No HTCondor concepts to learn, just extensions of

familiar Python functionality. Inspired by BNL!

Python

9

htcondor
package

10

import htcondor

Describe jobs
sub = htcondor.Submit('''

executable = my_program.exe
output = 'run$(ProcId).out'
''')

Submit jobs
schedd = htcondor.Schedd()
with schedd.transaction() as txn:
clusterid = sub.queue(txn,count = 10)

Wait for jobs
import time
while len(schedd.query(

constraint='ClusterId=='+str(clusterid),
attr_list=['ProcId'])):

time.sleep(1)

11

See https://github.com/htcondor/htmap

import htmap

Describe work
def double(x):

return 2 * x

Do work
doubled = htmap.map(double,range(10))

Use results!
print(list(doubled))
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

htmap
package

 Python (Flask) webapp for querying
HTCondor jobs, machines, and
config

 Runs alongside an HTCondor pool
 Listens to HTTP queries, responds

with JSON
 Built ontop of Python API
 (other cool tools coming

courtesy Python API…)

REST API

https://github.com/JoshKarpel/condor_watch_q

$ curl "http://localhost:9680/v1/status\
?query=startd\
&projection=cpus,memory\
&constraint=memory>1024"

[
{

"name": "slot4@siren.cs.wisc.edu",
"type": "Machine",
"classad": {

"cpus": 1,
"memory": 1813

}
},

…
]

Client

condor_restd

HTTP
GET

Collector.
query()

condor_collector

JSON

REST API, cont

• Swagger/OpenAPI spec to generate bindings for
Java, Go, etc.

• Evolving, but see what we've got so far at
• https://github.com/htcondor/htcondor-restd

• Potential Future improvements
• Allow changes (job submission/removal, config

editing)
• Add auth
• Improve scalability
• Run under shared port

REST API, cont

https://github.com/htcondor/htcondor-restd

Federation of Compute resources:
HTCondor Annexes

15

› Instantiate an HTCondor Annex to
dynamically add additional execute slots
into your HTCondor environment

› Want to enable end-users to provision an
Annex on
Clouds
HPC Centers / Supercomputers

• Via edge services (i.e. HTCondor-CE)
Kubernetes clusters

HTCondor "Annex"

16

17

CPU cores!

FNAL HEPCloud
NOvA Run
(via Annex at NERSC)

http://news.fnal.gov/2018/07/fermilab-computing-experts-bolster-nova-evidence-1-million-cores-consumed/

https://www.linkedin.com/pulse/cost-effective-exaflop-hour-clouds-icecube-igor-sfiligoi/

18

https://www.linkedin.com/pulse/cost-effective-exaflop-hour-clouds-icecube-igor-sfiligoi/

19

No internet access to HPC edge service?
File-based communication between

execute nodes

request status.1
status.2

input
input

input

output
output

output

status.3

JobXXXcondor_starter condor_starter'

› HTCondor has long been able to detect
GPU devices and schedule GPU jobs
(CUDA/OpenCL)

› New in v8.8:
Monitor/report job GPU processor utilization
Monitor/report job GPU memory utilization

› Working on for v8.9.x: simultaneously run
multiple jobs on one GPU device
Specify GPU memory?
Volta hardware-assisted Mutli-Process Service (MPS)?
Working with LIGO on requirements

GPUs

21

Containers and Kubernetes

22

HTCondor Singularity Integration

23

› What is Singularity?
Like Docker but…
No root owned daemon process, just a setuid
No setuid required (as of very latest RHEL7)
Easy access to host resources incl GPU, network, file

systems
› HTCondor allows admin to define a policy (with

access to job and machine attributes) to control
Singularity image to use
Volume (bind) mounts
Location where HTCondor transfers files

› Docker jobs get usage updates
(i.e. network usage) reported in
job classad

› Admin can add additional
volumes

› Conditionally drop capabilities
› Condor Chirp support
› Support for condor_ssh_to_job
For both Docker and Singularity

› Soft-kill (SIGTERM) of Docker
jobs upon removal, preemption

Docker Job Enhancements

24

› From "Docker Universe" to just jobs with a
container image specified

› Kubernetes
Package HTCondor as a set of container

images
Launch a pool in a Kubernetes cluster
… Next talk!...

More work coming

25

Security Changes and Enhancements

26

› Several Authentication Methods
File system (FS), SSL, pool password….

› Adding a new "IDTOKENS" method
Administrator can run a command-line tool to

create a token to authenticate a new submit
node or execute node
Users can run a command-line tool to create a

token to authenticate as themselves
› "Promiscuous mode" support

IDTOKENS
Authentication Method

27

› HTCondor has long supported GSI certs
› Then added Kerberos/AFS tokens w/ CERN, DESY
› Now adding standardized token support
SciTokens (http://scitokens.org) for HTCondor-CE, data
OAuth 2.0 Workflow  Box, Google Drive, AWS S3, …

SciTokens: From identity certs to
authorization tokens

28

http://scitokens.org/

Data Management

29

› Lots of data is shared across jobs
› Data Reuse mechanism in v8.9 can cache

job input files on the execute machine
On job startup, submit machine asks execute

machine if it already has a local copy of
required files
Cache is limited in size by administrator, LRU

replacement
› Todo list includes using XFS Reflinks

https://blogs.oracle.com/linux/xfs-data-block-sharing-reflink

Data Reuse Mechanism

30

https://blogs.oracle.com/linux/xfs-data-block-sharing-reflink

File Transfer Improvements
• If you use HTCondor to manage credentials, we include file transfer plugins for

Box.com, Google Drive, AWS S3, and MS One Drive cloud storage for both input files
and output files, and credentials can also be used with HTTP URL-based transfers.
Available in 8.9.4.

• Error messages greatly improved: URL-based transfers can now provide sane,
human-readable error messages when they fail (instead of just an exit code). Available in
8.8 series.

• URLs for output: Individual output files can be URLs, allowing stdout to be sent to the
submit host and large output data sent elsewhere. Available in 8.9.1.

• Smarter retries. Including retries triggered by low throughput. Available in 8.9.2.

• Via both job attributes and entries in the job's event log, HTCondor tells you the time
when file transfers are queued, when transfers started, and when transfers
completed.

• Performance improvements. No network turn-around between files, And all transfers
to/from the same endpoint happen over the same TCP connection. Available v8.9.2

• Have an interesting use case? Jobs can now supply their own file transfer plugins
— great for development! Available in 8.9.2.

32

executable = myprogram.exe

transfer_input_files = box://htcondor/myinput.dat

use_oauth_services = box

queue

› Central manager now manages queries
Queries (ie condor_status calls) are queued; priority is

given to operational queries

› More performance metrics (e.g. in collector,
DAGMan)

› In v8.8 late materialization of jobs in the
schedd to enable submission of very large
sets of jobs
Submit / remove millions of jobs in < 1 sec
More jobs materialized once number of idle jobs drops

below a threshold (like DAGMan throttling)

Scalability Enhancements

33

Late materialization

34

This submit file will stop adding
jobs into the queue once 50 jobs
are idle:

executable = foo.exe
arguments = -run $(ProcessId)
materialize_max_idle = 50
queue 1000000

› Job "clusters" (even with late
materialization) mostly behave as expected
Can remove all jobs in a cluster
Can edit all jobs in a cluster

› But some operations are missing
Append jobs to a set (in a subsequent

submission)
Move an entire set of jobs from one schedd to

another
Job set aggregates (for use in polices?)

From Job Clusters to Job Sets

35

› Users want to think about a set of jobs as it
relates to their mental model, e.g.
Set of jobs analyzing genome 52
Set of jobs doing analysis on image captures from date

xxx
› Initial support for sets in v8.9:
User supplies a set name upon submission
All jobs with the same name are in the same set
Aggregate statistics on set written to History file when

last job in a set completes
More set operations to come…

From Job Clusters to Job Sets, cont

36

DAGMan: Scalability Optimizations
• DAGMan memory diet! Dedup node string data, edges are

vectors instead of lists, etc:
• In one DAG, these reduced the memory footprint from 50

GB to 4 GB
• Can now submit jobs directly (and faster!) without forking

condor_submit
• Introduced join nodes, which dramatically reduce the

number of edges in dense DAGs. In one particularly dense
DAG with ~300,000 edges, join nodes resulted in
the following improvements:
• ~660M edges reduced to ~1.5M edges.
• condor_dagman memory footprint dropped from 90 GB

to 1 GB
• Parsing time reduced from 1 hour to 20 seconds

Workflows: Provisioner Nodes
› Working to implement provisioner nodes
Special node that runs for the duration of a workflow

› Responsible for provisioning compute resources on
remote clusters (Amazon EC2, Microsoft Azure,
etc.)

› Important: also responsible for
deprovisioning resources after they are no longer
needed.
These resources cost money.
If we fail to deprovision them, this can incur large costs.
Recovery from failures is a first class citizen.

Workflows: What's Coming Next
› Sets, Sets, Sets!
New syntax in the DAGMan language to describe sets

of jobs
› Defining ranges in DAG declarations
New syntax to declare ranges of objects
No more 10,000 JOB statements to declare 10,000

jobs whose only difference is a numeric suffix.
› condor_dagedit
Ability to edit certain properties of in-progress DAGs

(MaxJobs, MaxIdle, etc.)
› Dataflow mode
Ability to skip jobs that have already been run (like

/usr/bin/make!)

Thank You!

40

	What’s new in HTCondor?�What’s coming?���
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Release Series
	What's new in v8.8 and/or�cooking for v8.9 and beyond?
	HTCondor v8.9.x �Removes Support for:
	API Enhancements: Python, REST
	Python
	htcondor�package
	Slide Number 11
	REST API
	REST API, cont
	Slide Number 14
	Federation of Compute resources: �HTCondor Annexes
	HTCondor "Annex"
	Slide Number 17
	Slide Number 18
	No internet access to HPC edge service?�File-based communication between execute nodes�
	GPUs
	Containers and Kubernetes
	HTCondor Singularity Integration
	Docker Job Enhancements�
	More work coming
	Security Changes and Enhancements
	IDTOKENS �Authentication Method
	SciTokens: From identity certs to �authorization tokens
	Data Management
	Data Reuse Mechanism
	File Transfer Improvements
	Slide Number 32
	Scalability Enhancements
	Late materialization
	From Job Clusters to Job Sets
	From Job Clusters to Job Sets, cont
	DAGMan: Scalability Optimizations
	Workflows: Provisioner Nodes
	Workflows: What's Coming Next
	Thank You!

