HTCondor and Containers for Batch and Interactive use
(Mostly) a success story

Oliver Freyermuth, Peter Wienemann

University of Bonn
{freyermuth,wienemann}@physik.uni-bonn.de

19th May, 2020
Physics Institute at University of Bonn

- 240 members
- Biggest particle accelerator run by a German university (‘ELSA’, 164.4 m circumference) with two experiments (≈ 50 people)
- Groups from:
 - Particle Physics: ATLAS, Belle II
 - Hadron physics
 - detector development
 - photonics
 - theory groups

Extremely diverse requirements on software environments & job resources.

Old cluster used PBS / Maui, everything SL 6, mostly HEP usage. Chance to start over in 2017 ⇒ HTCondor!
Classical Cluster Setup

PI Network (GPN)
- desktop001
- desktop002
- desktop003

PI Network:
- cvmfs-stratum0
- cvmfs-stratum1a
- cvmfs-stratum1b
- squid1
- squid2

NAT
NHCP fwd

Worker Nodes:
- WN001
- WN002
- WN003

condor-cm1
condor-cm2

Servers:
- OSD002
- OSD001
- MDS001
- MDS002
- MDS003

CephFS

BONNET (campus network / internet)

Desktops

Job submission

Gateway:
- gw1
- gw2
Our setup: ‘Submit Locally, Run Globally’
Key changes in our new setup

- All desktops, worker nodes, condor central managers fully puppetized, for HTCondor: HEP-Puppet/htcondor
 Module allows to set up queue super-users, block users from submission, set up HTCondor for Singularity,…
- **No login / submission nodes** (‘use your desktop’)
- Condor central managers in desktop network
- Desktops running Ubuntu 18.04 LTS
- Cluster nodes running CentOS 7.8
- Full containerization (all user jobs run in containers)
- Containerization decouples OS upgrades from user jobs
- Cluster file system (CephFS) directly accessible from Desktop machines via NFS.
- Cluster worker nodes interconnected with InfiniBand (56 Gbit/s) instead of Gigabit ethernet
HTCondor Configuration

- Authentication via Kerberos / LDAP
 - Issues with ticket lifetime don’t hit us heavily — yet
 (mostly short jobs, Kerberos only needed on submit machine, users with long jobs have to prolong manually)
 - Hit by some HTCondor bugs (no ticket caching on Collector overloading KDC servers, dagman authentication issue)

⇒ Looking forward to HTCondor prolonging tickets!

- Node health script:
 - run via STARTD_CRON
 - can pick up admin-enforced state via Puppet (e.g. for maintenance)
 - picks up state from ‘reboot-needed’ cronjob
 - Captures common node overload issues:
 - Heavy I/O on local disks (iowait)
 - Heavy swapping (HTCondor cannot limit swap usage!)
Node health checking

condor-cm1.physik.uni-bonn.de: HTCondor Machine unhealthy reasons (7d)
Node reboot handling

- Detection mainly via `needs-restarting -r`
- Start of drain smeared out over 10 days
- Marks nodes as ‘unhealthy’

This functionality is there (one way or another) in many clusters—but how do we survive without login / submit nodes?
Choice of Container Runtime

- Aiming for unprivileged lightweight runtime
- Needs working HTCondor support including interactive jobs
- Allow image distribution via CernVM FS

CernVM FS

- Read-only file system with aggressive caching and deduplication
- Ideal for many small files and high duplication factor
- Perfect match for unpacked containers
- ‘Unpacked’ is a requirement for rootless operation

⇒ Settled on Singularity for now, but wishing for support for off-the-shelf solutions such as Podman / runc.
Singularity

- Supports privileged and unprivileged operation
- Developed at LBNL, optimized for HPC applications: http://singularity.lbl.gov
- Process and file isolation, optional network isolation (no kernel isolation)
- Commonly used in HEP community
- Still works with old kernels (e.g. CentOS 6), *privileged only*

However...

- Young project with non-negligible rate of CVEs (version 3.0 was a full rewrite in Go)
- Focus on SIF™ (Singularity Image Format) requiring root
- Reproduces a lot of existing, standardized infrastructure in a non-standard way (cloud builders, container library etc.)

⇒ Use it, but avoid a lock-in as far as possible.
Container Build Workflow

- All containers based on official DockerHub base images
- Ubuntu 20.04 /18.04, Debian 10, CentOS 8 / 7, SL 6
- Rebuilt at least daily with Singularity recipe (site-specifics)
- Deployed to our own CVMFS, kept there for at least 30 days
- Unpacked images also work with other runtimes (only site-specifics in Singularity recipes slightly builder-dependent)

CVMFS usage over a year, Containers (daily) & Software

![Graph showing disk space usage on CVMFS-stratum-zero physik.uni-bonn.de over a year. The graph indicates a steady increase in disk usage with peaks at certain points. The last update is 02.14.21. Data from trends generated in 02.14.21.](image)
Container Site-Specifics

- Compatibility with HEP experiments’ requirements (HEP_Oslibs, ALRB)
- User data directory in environment variable, quota check tool
- DBUS hacks for X11 applications in containers
- HTCondor resource requests (login message, environment)
- lmod environment modules integration:

  ```bash
  module load mathematica/12.1.0
  ```

- Source user-defined `.bashrc`, potentially OS-specific, from shared file system
- Necessary hacks for CUDA / GPU support
- OpenMPI without HTCondor inside containers (via HTChirp)
- Allow users to relay mail
- Timezone setup
- Add packages requested by users
HTCondor Integration

- All jobs forced into Singularity

\[
\text{SINGULARITY_JOB} = \text{true}
\]

- Users can select from pre-build containers (‘choose your OS’)

\[
\begin{align*}
\text{CHOSEN_IMAGE} &= "\$(\text{SL6_DEFAULT_IMAGE})" \\
\text{CHOSEN_IMAGE} &= \text{ifThenElse} (\text{TARGET_ContainerOS} \text{ is} \\
&\quad "\text{CentOS7}", "\$(\text{CENTOS7_DEFAULT_IMAGE})", \\
&\quad "\$(\text{CHOSEN_IMAGE})")
\end{align*}
\]

\[
\begin{align*}
\text{CHOSEN_IMAGE} &= \text{ifThenElse} (\text{TARGET_ContainerOS} \text{ is} \\
&\quad "\text{Ubuntu1804}", "\$(\text{UBUNTU1804_DEFAULT_IMAGE})", \\
&\quad "\$(\text{CHOSEN_IMAGE})")
\end{align*}
\]

\[
\text{SINGULARITY_IMAGE_EXPR} = \$\text{(CHOSEN_IMAGE)}
\]

- Paths to most recent image per OS and available OSes provided by include command: someScript.sh
‘Choose your OS’

- Users add to their Job ClassAd:

 +ContainerOS = "CentOS7"

- Their jobs run in a container
- Same for interactive jobs (‘login-node experience’!)
- Small fractions of worker nodes exclusively for interactive jobs

But: Interactive jobs can go to any slot!

- Resource-request specific tuning via `/etc/profile` possible:

  ```
  REQUEST_CPUS=$(awk '/^RequestCpus/ {print $3}' ${_CONDOR_JOB_AD})
  export NUMEXPR_NUM_THREADS=${REQUEST_CPUS}
  export MKL_NUM_THREADS=${REQUEST_CPUS}
  export OMP_NUM_THREADS=${REQUEST_CPUS}
  export CUBACORES=${REQUEST_CPUS}
  export JULIA_NUM_THREADS=${REQUEST_CPUS}
  ```

⇒ Now part of HTCondor 8.9.4! (see #7296)
Necessary hacks for interactive jobs

- As of HTCondor 8.6, interactive jobs use an `sshd` running inside the container (i.e. singularity is a ‘job-wrapper’ command)
- Need to have `sshd` installed inside the container
- We only got this to work privileged (potentially could tweak groups file to not contain `tty` group to go unprivileged)
- Need some obscure extra bind mounts:

  ```
  SINGULARITY_BIND_EXPR = 
  "'/pool,/usr/libexec/condor/,/cephfs,/cvmfs,/dev/infiniband"
  
  ⇒ Need to include EXECUTE directory (`/pool`) and
  `/usr/libexec/condor` here!
  ```
Remaining issues in 8.6...

- singularity is only a ‘job-wrapper’ command
 - ⇒ sshd runs in a new container
 - ⇒ Interactive works ‘fine’ (two containers started...), but condor_ssh_to_job does not!
- Killing jobs takes long in some cases...
- Difference between batch and interactive
 (source /etc/profile needed in batch)

However...

- We have been running with this for over two years now.
- Users are delighted by the new choices, and ssh -X works!
- There’s light on the horizon...!
The **nsenter** approach

- Enter the namespaces the container runtime has created
 ⇒ Essentially, ‘attach’ to the container!
- Compatible with *any* container runtime using namespaces (with potential quirks)
- Other container runtimes one could think of:
 - Charliecloud (https://hpc.github.io/charliecloud/)
 - Even more lightweight (no PID / network namespaces)
 - *PID namespace could be handled by HTCondor*
 - Code is short and easily auditable
 - Podman / runc (https://podman.io/)
 - Included in RHEL 7.6 and 8 with official support
 - Can be used with `alias docker=podman`
 - Can run rootless
 - CRIU integration (freeze, live-migrate)
 - Still requires bind-mount target directories to exist for rootless (GitHub issue 1671)

Here comes HTCondor 8.8!
HTCondor 8.8

- sshd now running outside of the container!
- However, lots of issues in 8.8.0:
 - Too modern nsenter required (not in any LTS distro)
 ⇒ fixed in 8.8.2
 - Support for rootless broken
 ⇒ fixed in 8.8.2
 - Interactive jobs closed after 3 minutes
 ⇒ partially fixed in 8.8.3, full fix in 8.8.9
 - Environment in interactive jobs / condor_ssh_to_job unset
 ⇒ mostly fixed in 8.8.5, ideally would adopt /proc/<pid>/environ (we use a workaround)
 - Interactive jobs / condor_ssh_to_job do not get a pty
 ⇒ not fixed yet, workaround via ‘script /dev/null’ possible
- Now running 8.8.9 everywhere but startd machines (8.6.13)
 ⇒ This requires some dirty hacks (interactive jobs never close).
 ⇒ This causes jobs to die on short network connection loss.

Looking forward to future fixes making 8.8 usable for us!
Container Usage

Graphs showing container usage over time, with various container OSs and job sizes.
Container Usage: Well accepted!

Instead of `ssh` to a login node, users run:

```bash
freyermu@exp199:$ condor_submit -interactive -append
  ' +ContainerOS="CentOS7"
Submitting job(s).
1 job(s) submitted to cluster 1008.
/usr/bin/xauth: file /jwd/.Xauthority does not exist
Welcome to sloti_2_2@wn004.baf.physik.uni-bonn.de!
You will be logged out after 7200 seconds of inactivity.
You requested 1 core(s), 512 MB RAM, 125 kB disk space.
freyermu@wn004(CentOS7) /pool/condor/dir_14973 $
```

- Well accepted by users.
- Rarely, new users still try to run SL 6 code on CentOS 7...
- No good way to run an IDE in the same environment (but this is also true for login nodes).
Conclusions

- New cluster setup works very well for us!
- Getting rid of login nodes solved a lot of issues and headaches
- HTCondor does a very good job and ClassAd system is extremely flexible both for administrators and users
- Containers with different software environments well-accepted and heavily used
- Still, we hit a list of bugs and follow the ongoing improvements closely...

Thank you!
Thank you for your attention!