

Update on Background Simulation Techniques

Nick Decheine, implements Thomas' Slides

UW-Madison

March 25, 2020

Outline

- 1 Results
- 2 More realistic reactogenic background simulation
- 3 Improve Shielding Geometry
- 4 Veto techniques
- 5 Summary

Simulation Results

• Simulation results

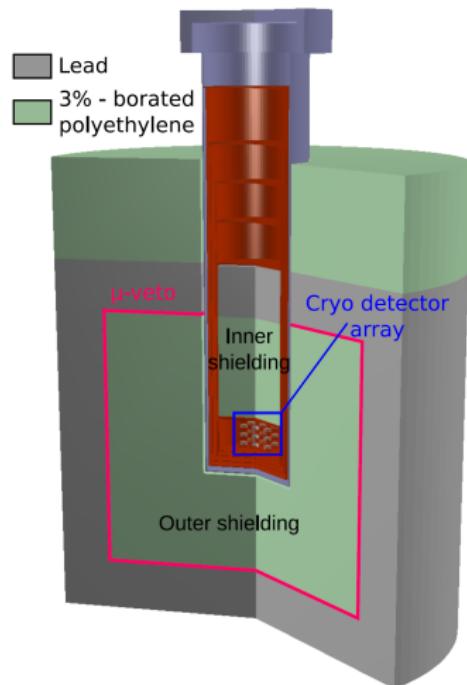
		Cosmogenic	Reactogenic	Total (MC)	Total (goal)
Electronic recoils [50 eV, 1 keV] (evts/day/kg)	No Shielding	260 ± 5	4365 ± 301	4625 ± 301	–
	Passive Shielding	166 ± 2	34 ± 4	200 ± 5	–
	Passive Shielding + muon-veto	1.1 ± 0.1		35 ± 4	100
Neutron recoils [50 eV, 1 keV] (evts/day/kg)	No Shielding	1554 ± 12	53853 ± 544	55407 ± 545	–
	Passive Shielding	39 ± 1	5.4 ± 0.2	45 ± 1	–
	Passive Shielding + muon-veto	17 ± 1		23 ± 1	5

• Veto results

Nuclear recoils background in [50 eV, 1 keV]:

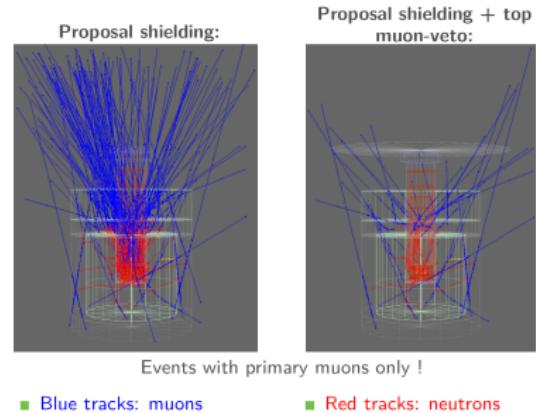
	No shielding	Proposal shielding	Proposal shielding + top μ -veto	Proposal shielding + perfect-coverage μ -veto
Absolute rate	40 DRU	17 DRU	9 DRU	6 DRU
Relative to no shielding case	1	0.43	0.23	0.15
Relative to perfect μ -veto case	6.7	2.8	1.5	1

Reactogenic Neutron Simulation


The reactogenic neutron simulation is thought to be unrealistic and pessimistic.

Uses the energy spectrum of the neutrons leaking from the ILL H13 beamline, however:

- H7 site not taken into account, so the neutron energy spectrum should be softer
- Neutrons generated close to the shielded detector without any wall → higher neutron flux than expected
- Note: neutrons leaving end of H7 line have a max energy of 6 MeV.


Shielding Improvements

- Split the lead shielding into 2 layers to interpose veto
- Decrease thickness
- Use polyethylene rings in between cryostat screen panels to fill in gaps

Full coverage muon veto

- Hole at the top of the cryostat outer shielding - guiding primary neutrons (red).
- Large contribution of muon "dying", causing neutron spallation in shielding. So decrease thickness of lead shielding.
- Remain 6 DRU rate with perfect veto is mainly due to primary neutrons.
- With top veto, muon induced background represents only 1/3 of the cosmogenic nuclear background.

Background Improvement Techniques

- Implement more realistic reactogenic simulation
- Design a muon-veto with full coverage
- Separate lead shielding into two layers
- Decrease lead shielding thickness
- Use polyethylene rings between cryostat screens to fill gaps