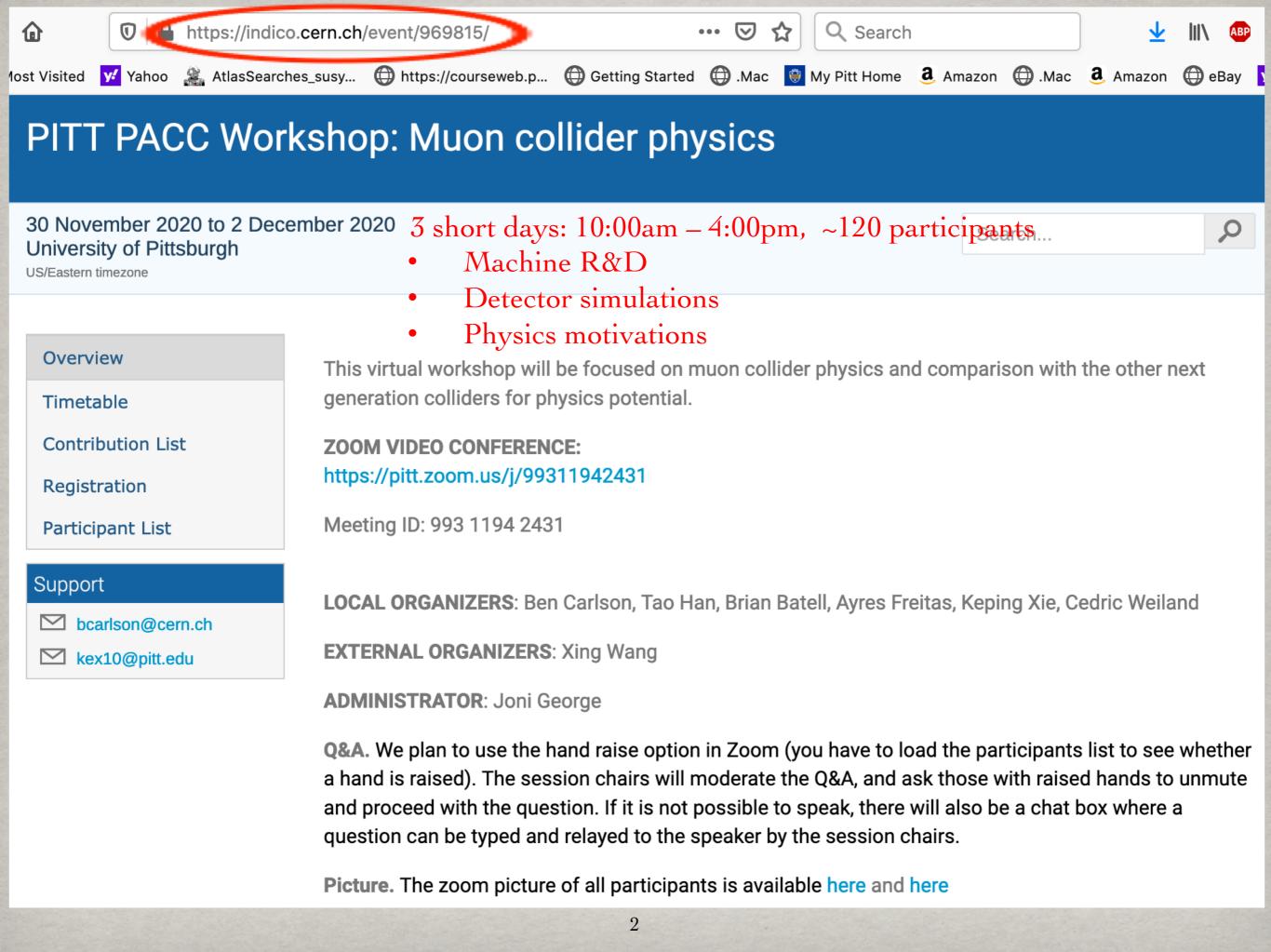
MUON COLLIDER PHYSICS -- RECENT PHENO DEVELOPMENTS


Tao Han

"Muon Collider Exploration" Dec. 10, 2020

Brief Report on Pitt PACC Workshop

• Recent Developments in Phenomenology

Accelerator R&D:

Day 1:

- 1. Nadia Pastrone: Muon collider: Are we ready?
- 2. Daniel Schulte: Current status of muon collider program

Formal collaboration at any moment

International Muon Collider Collaboration

Actual work started with meetings on design

- Accelerator design (-> daniel.schulte@cern.ch)
- Physics and detectors (-> nadia.pastrone@cern.ch)
- Physics potential (-> andrea.wulzer@cern.ch),
- Detector simulations (-> donatella.lucchesi@pd.infn.it),

Will have project meeting with accelerator and physics

• Every few months, half day long

Web page: http://muoncollider.web.cern.ch

• Find link to meetings in menu "Organisation"

Mailing lists: MUONCOLLIDER DETECTOR PHYSICS@cern.ch,

MUONCOLLIDER FACILITY@cern.ch

PITT PACC 30/11/2020

D. Schulte: Muon Collider Collaboration

Many thanks to all MAP collaboration, M. Palmer LEMMA team Muon collider working group **European Strategy Update** LDG

•••

Review Conclusion

Muon cooling (-> <u>chris.rogers@stfc.ac.uk</u>, <u>klaus.hanke@cern.ch</u>) We think we can answer the following questions

- Can muon colliders at this moment be considered for the next project?
 - · Enormous progress in the proton driven scheme and new ideas emerged
 - But at this moment not mature enough for a proposal
- Is it worthwhile to do muon collider R&D?
 - Yes, it promises the potential to go to very high energy
 - It may be the best option for very high lepton collider energies, beyond 3 TeV
 - It has strong synergies with other projects, e.g. magnet and RF development
 - Has synergies with other physics experiments
 - Should not miss this opportunity

What needs to be done?

- Muon production and cooling is key => A new test facility is required.
- A conceptual design of the collider has to be made
- Many components need R&D, e.g. fast ramping magnets, background in the detector
- Site-dependent studies to understand if existing infrastructure can be used
 - limitations of existing tunnels, e.g. radiation issues
 - optimum use of existing accelerators, e.g. as proton source

Accelerator R&D:

Day 2:

1. Mark Palmer: MAP feasibility studies as basis for future capabilities

2. Diktys Stratakis: Overview of ionization cooling for a muon collider

Looking Forward...

- Muon Colliders offer an energy-efficient path to multi-TeV CoM energies
- Recent physics studies indicate that important collider physics is accessible
- - Updated Cooling Channel Conceptual Design
 - Demonstrator of a high intensity cooling cell
- Other key developments to pursue for a TeV-class collider (pushing beyond the parameters and scope of MAP)
 - Ongoing physics studies
 - Detailed designs for TeV-class acceleration
 - Full end-to-end conceptual design
 - Mitigation approaches to minimize " ν Radiation" issues at the exit point on the surface

A new international design effort is timely and ready to evaluate an important option for the HEP community

PITT PACC Workshop: Muon Collider Physics

Detector & Simulations: Day 3:

1. Donatella Lucchesi:

Muon collider: detector performances from full simulation

2. Michele Selvaggi: Simulations for muon colliders Summary

First detector simulation performed with MAP design

- Muon Collider detectors have to be carefully designed with both physics goals and BIB in mind.
- General considerations: rad hard, high granularity, high time resolution.
- Using special and time information is crucial for on-detector filtering in order to reduce bandwidth and power requirements to a manageable level.
- > Trigger-less readout is probably the way to go.
- Additional considerations should be given to special cases, for example very high energy muons, displaced tracking, slow particles.

Related topics: Simulation tools

- 1. Fabio Maltoni: MadGraph & VBF processes
- 2. Wolfgang Kilian: WHIZARD & Multiple boson production **Much work** needed to handle the computation for $\mu^+\mu^-$ collisions @ ultra-high energies!

Theoretical motivations & physics potential: Inspirational: Nima Akarni-Hamed: Muon colliders rock! Raman Sundrum: Muon collider against the backdrop of fundamental physics General: Andrea Wulzer: Why building a muon collider?

Keping Xie: Standard Model physics at HE muon colliders

Higgs & EWSB: Zhen Liu: Physics at Higgs factories Xing Wang: SM Higgs couplings at a HE muon collider Shufang Su: 2HDM at a HE muon collider

DM & Leptons: Lian-Tao Wang: WIMP DM at HE muon colliders Rodolfo Capdevilla: Guaranteed discovery at muon colliders Patrick Huber: Neutrino physics at the neutrino factory

.....

It's just beginning ...

Muon colliders:

nonomatons of the motor

Tol

facilitia

Table 1: Main parameters of the proton driver muon facilities							
Parameter	Units	Higgs		Multi-TeV			
CoM Energy	TeV	0.126	1.5	3.0	6.0		
Avg. Luminosity	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.008	1.25	4.4	12		
Beam Energy Spread	%	0.004	0.1	0.1	0.1		
Higgs Production $/10^7$ sec		13'500	37'500	200'000	820'000		
Circumference	km	0.2	2.5	4.5	6		
No. of IP's		1	2	2	2		
Repetition Rate	Hz	15	15	12	6		
$eta^*_{x,y}$	cm	1.7	1	0.5	0.25		
No. muons/bunch	10^{12}	4	2	2	2		
Norm. Trans. Emittance, $\varepsilon_{\rm TN}$	$\mu \mathrm{m} ext{-rad}$	200	25	25	25		
Norm. Long. Emittance, ε_{LN}	$\mu\mathrm{m} ext{-rad}$	1.5	70	70	70		
Bunch Length, $\sigma_{\rm S}$	cm	6.3	1	0.5	0.2		
Proton Driver Power	MW	4	4	4	1.6		
Wall Plug Power	MW	200	216	230	270		

Each topic deserves an hour talk ... Will only talk about the HE option.

7

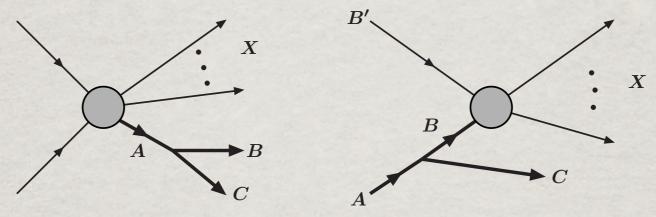
Multi-TeV muon colliders

- New physics threshold \rightarrow higher energies
- EW interactions → high luminosities

Lumi-scaling scheme: keep constant event rate for $\sigma \sim 1/s$

$$L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s_{\mu}}}{10 \text{ TeV}} \right)^2 2 \cdot 10^{35} \text{cm}^{-2} \text{s}^{-1} = 1 \text{ ab}^{-1} / \text{yr}$$

Benchmark points: (aggressive choices) $\sqrt{s} = 3, 6, 10, 14, 30 \text{ and } 100 \text{ TeV}, \quad \mathcal{L} = 1, 4, 10, 20, 90, \text{ and } 1000 \text{ ab}^{-1}$ Exciting opportunities for new physics! European Strategy, arXiv:1910.11775; arXiv:1901.06150; arXiv:2007.15684.

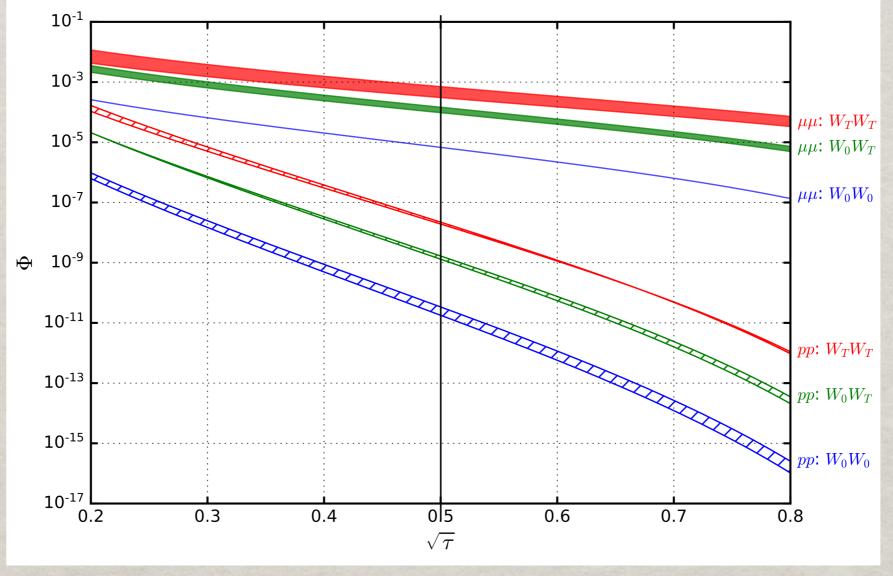

The rest of the talk:

- SM physics at ultra-high energies
- Precision Higgs physics
- Discovery of new heavy states: Heavy Higgs bosons
 WIMP (SUSY) Dark matter

TH, Yang Ma, Keping Xie, arXiv:2007.14300
TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204
TH, Z. Liu, L.T. Wang, X. Wang, arXiv:2009.11287
TH, S.L. Li, S. Su, W. Su, Y.-C. Wu, to appear

• EW physics at ultra-high energies: $\frac{v}{E}: \frac{v \ (250 \ {\rm GeV})}{20 \ TeV} \approx \frac{\Lambda_{QCD} \ (300 \ {\rm MeV})}{20 \ GeV}$ $v/E, m_t/E, M_W/E \rightarrow 0!$ • A massless theory: splitting phenomena dominate • EW symmetry restored: $SU(2)_{L} \ge U(1)_{Y}$ unbroken Goldstone boson Equivalence & its violation: $\epsilon(k)_L^{\mu} = \frac{E}{m_W}(\beta_W, \hat{k}) \approx \frac{k^{\mu}}{m_W} + O(M_W/E)$ v/E power counting \rightarrow Higher twist effects. J. Chen, TH, B. Tweedie, arXiv:1611.00788; G. Cuomo, A. Wulzer, arXiv:1703.08562; 1911.12366

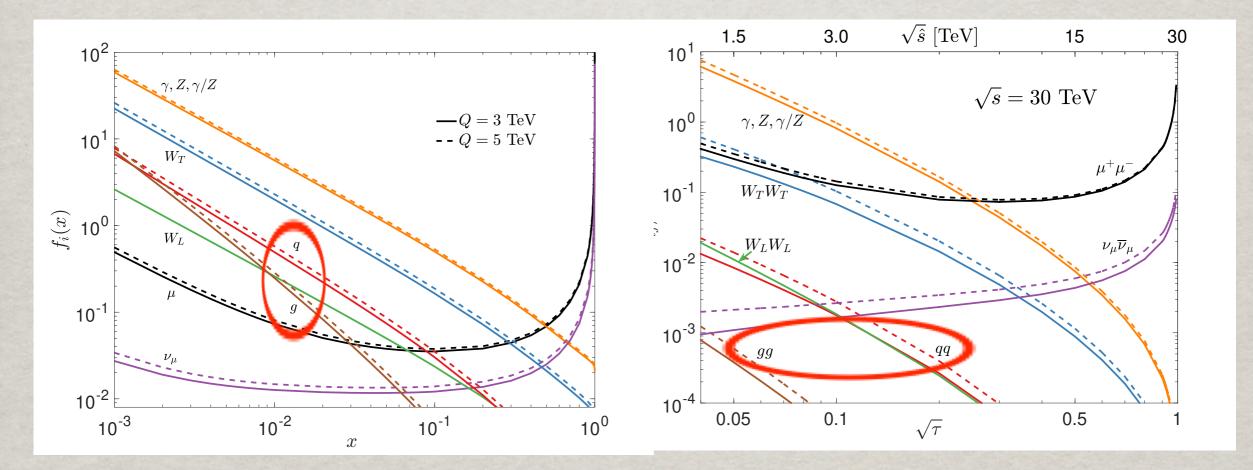
EW splitting physics: \mathcal{M}_k the dominant phenomena at high energies


 $d\sigma_{X,BC} \simeq d\sigma_{X,A} \times d\mathcal{P}_{A \to B+C}$

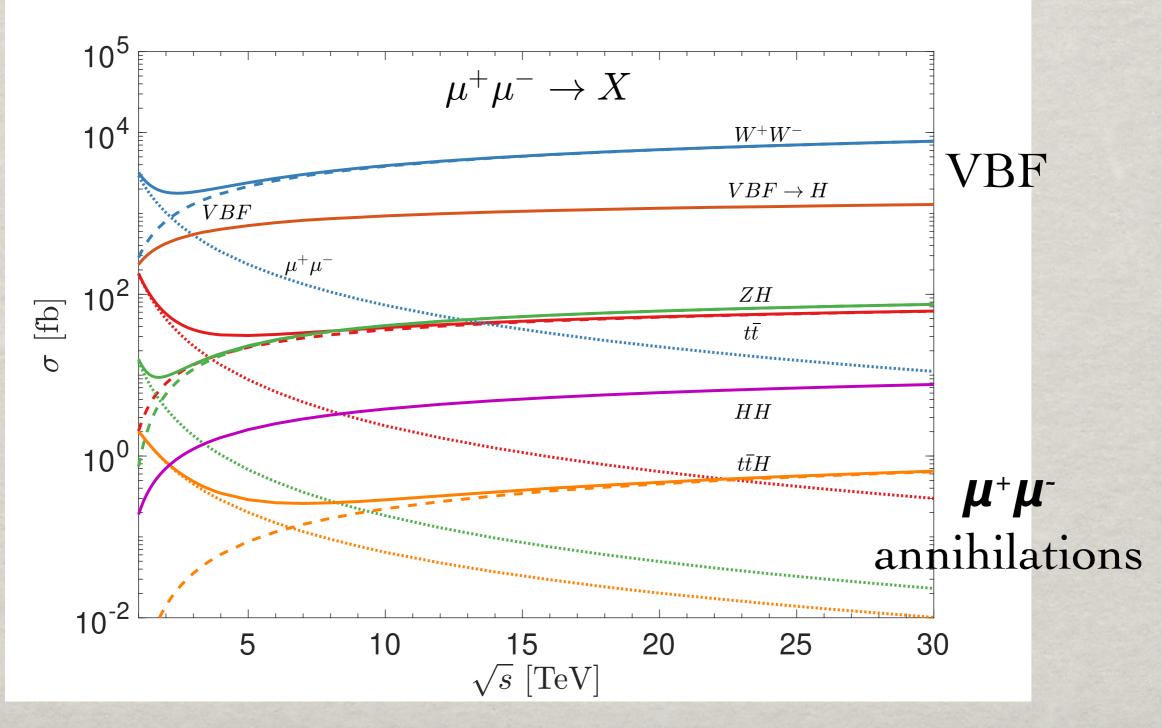
 $E_B \approx z E_A, \quad E_C \approx \bar{z} E_A, \quad k_T \approx z \bar{z} E_A \theta_{BC}$ $\frac{d\mathcal{P}_{A \to B+C}}{dz \, dk_T^2} \simeq \frac{1}{16\pi^2} \frac{z \bar{z} |\mathcal{M}^{(\text{split})}|^2}{(k_T^2 + \bar{z} m_B^2 + z m_C^2 - z \bar{z} m_A^2)^2}$

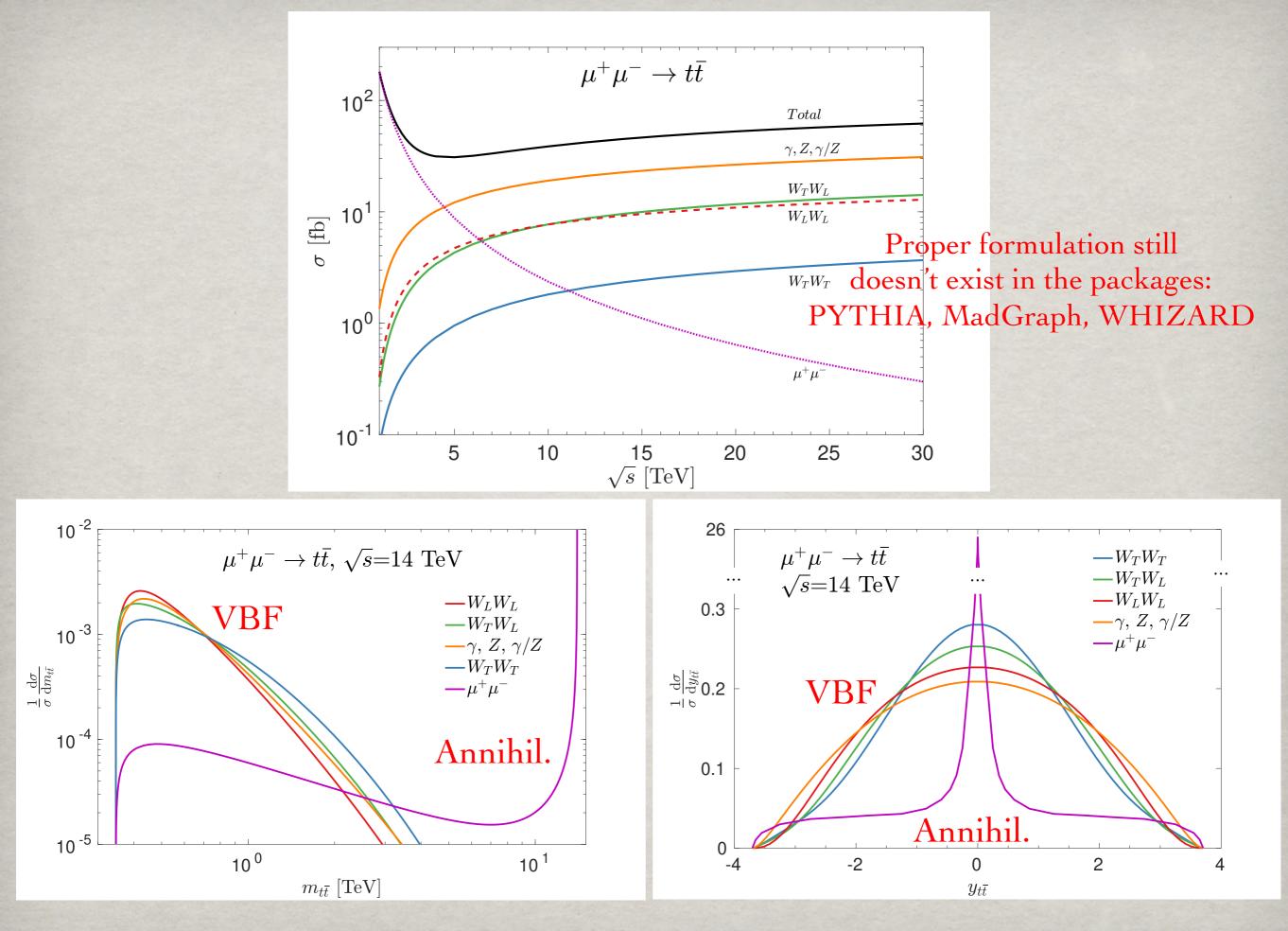
- On the dimensional ground: $|\mathcal{M}_{split}|^2 \sim k_T^2$ or m^2
- For the factorized formalism to be valid: infra-red safe & leading behavior: not guaranteed

Ciafaloni et al., hep-ph/0004071; 0007096 C. Bauer, Ferland, B. Webber et al., arXiv:1703.08562; 1808.08831. A. Manohar et al., 1803.06347.


$$\begin{aligned}
& \text{VBF luminosities: } \boldsymbol{\mu} - \mathbf{C} \text{ versus pp} \\
& \Phi_{W_{\lambda_{1}}^{+}W_{\lambda_{2}}^{-}}(\tau,\mu_{f}) = \int_{\tau}^{1} \frac{d\xi}{\xi} f_{W_{\lambda_{1}}/\mu}(\xi,\mu_{f}) f_{W_{\lambda_{2}}/\mu}\left(\frac{\tau}{\xi},\mu_{f}\right) \\
& \Phi_{V_{\lambda}V_{\lambda'}'}(\tau,\mu_{f}) = \frac{1}{1+\delta_{V_{\lambda}V_{\lambda'}'}} \int_{\tau}^{1} \frac{d\xi}{\xi} \int_{\tau/\xi}^{1} \frac{dz_{1}}{z_{1}} \int_{\tau/\xi/z_{1}}^{1} \frac{dz_{2}}{z_{2}} \sum_{q,q'} \\
& \left[f_{V_{\lambda}/q}(z_{2}) f_{V_{\lambda'}'/q'}(z_{1}) f_{q/p}(\xi) f_{q'/p}\left(\frac{\tau}{\xi z_{1} z_{2}}\right) + f_{V_{\lambda}/q}(z_{2}) f_{V_{\lambda'}'/q'}(z_{1}) f_{q/p}\left(\frac{\tau}{\xi z_{1} z_{2}}\right) f_{q'/p}(\xi) \right].
\end{aligned}$$

F. Maltoni, R. Ruiz et al., arXiv:2005.10289


$$\sigma(\ell^+\ell^- \to F + X) = \int_{\tau_0}^1 d\tau \sum_{ij} \frac{d\mathcal{L}_{ij}}{d\tau} \,\hat{\sigma}(ij \to F),$$
$$\frac{d\mathcal{L}_{ij}}{d\tau} = \frac{1}{1+\delta_{ij}} \int_{\tau}^1 \frac{d\xi}{\xi} \left[f_i(\xi, Q^2) f_j\left(\frac{\tau}{\xi}, Q^2\right) + (i \leftrightarrow j) \right]$$


- Coupled DGLAP Eqs under $SU(3)_c x SU(2)_L x U(1)_Y$
- Multiple scales: QED@ln(m_{μ}), Λ_{QCD} , EW@ln(M_{W})

TH, Yang Ma, Keping Xie, arXiv:2007.14300

Semi-inclusive processes: Just like in hadronic collisions $\mu^{+}\mu^{-} \rightarrow$ exclusive particles + remnants

Precision Higgs physics

VDE

$\mu^+\mu^- \xrightarrow{\text{VBF}}$	H, Z	H, HH	I and	$t\bar{t}H$	
			$10^4 {\rm fb}^{-1}$		
\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab^{-1})	1	4	10	20	90
$\sigma \text{ (fb): } WW \to H$	490	700	830	950	1200
$ZZ \rightarrow H$	51	72	89	96	120
$WW \to HH$	0.80	1.8	3.2	4.3	6.7
$ZZ \to HH$	0.11	0.24	0.43	0.57	0.91
$WW \rightarrow ZH$	9.5	22	33	42	67
$WW \to t\bar{t}H$	0.012	0.046	0.090	0.14	0.28
$WW \rightarrow Z$	2200	3100	3600	4200	5200
$WW \rightarrow ZZ$	57	130	200	260	420

$$\mathcal{L} \supset \left(M_W^2 W_\mu^+ W^{-\mu} + \frac{1}{2} M_Z^2 Z_\mu Z^\mu \right) \left(\kappa_V \frac{2H}{v} + \kappa_{V_2} \frac{H^2}{v^2} \right) - \frac{m_H^2}{2v} \left(\kappa_3 H^3 + \frac{1}{4v} \kappa_4 H^4 \right)$$
$$\mathcal{O}_H = \frac{c_H}{2\Lambda^2} \partial_\mu (\Phi^\dagger \Phi) \partial^\mu (\Phi^\dagger \Phi) , \quad \mathcal{O}_6 = -\frac{c_6\lambda}{\Lambda^2} (\Phi^\dagger \Phi)^3$$
$$\Delta \kappa_V = -\frac{c_H}{2} \frac{v^2}{\Lambda^2} , \qquad \Delta \kappa_{V2} = -2c_H \frac{v^2}{\Lambda^2} ,$$
$$\Delta \kappa_3 \approx -\frac{3c_H}{2} \frac{v^2}{\Lambda^2} + c_6 \frac{v^2}{\Lambda^2} , \qquad \Delta \kappa_4 \approx -\frac{25}{9} c_H \frac{v^2}{\Lambda^2} + 6c_6 \frac{v^2}{\Lambda^2}$$

TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204

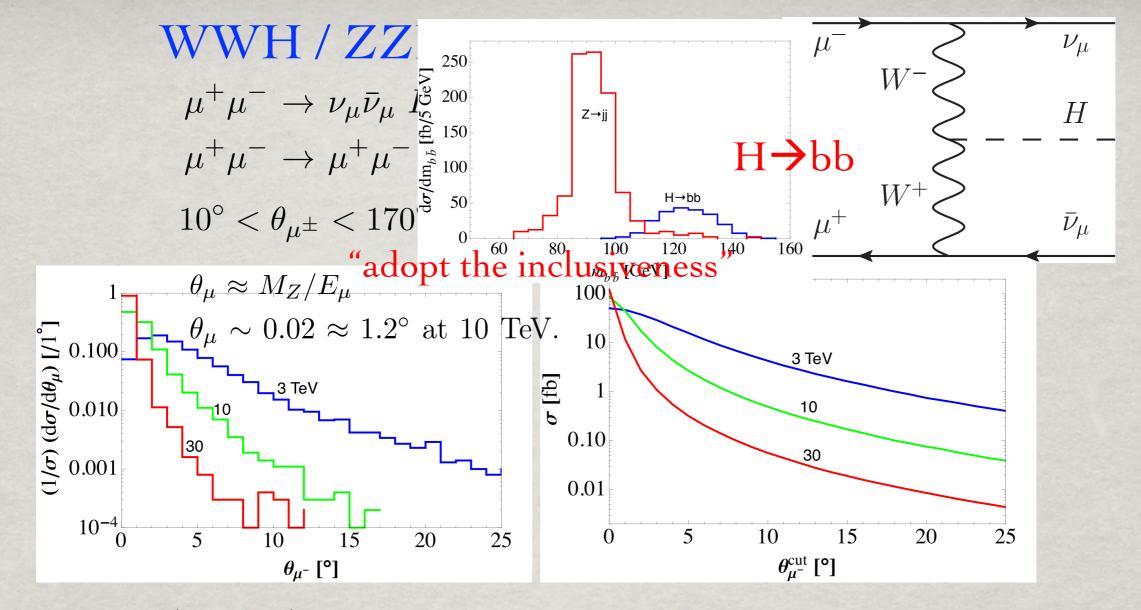
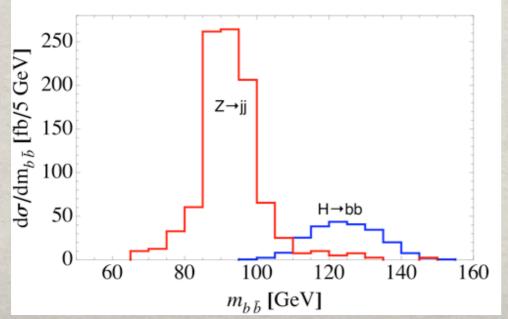
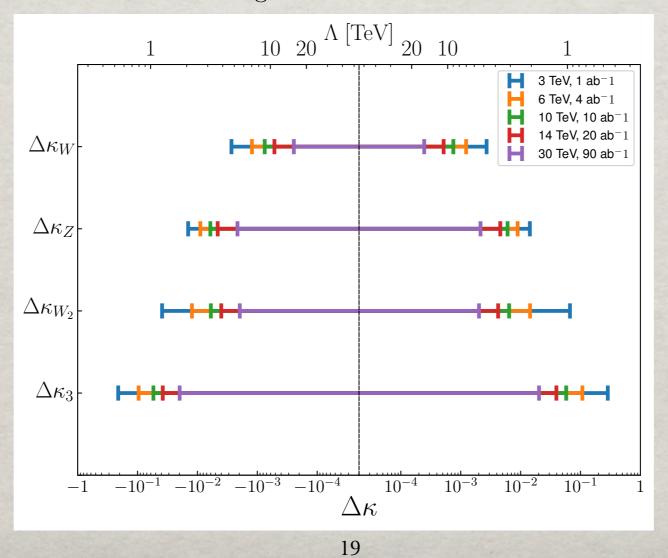



Figure 3: $\mu^+\mu^- \to \mu^+\mu^- H$ via ZZ fusion with $\sqrt{s} = 3,10$ and 30 TeV for (a) angular distribution θ_{μ^-} , and (b) total cross section versus an angular cut $\theta_{\mu^-}^{\text{cut}}$.

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab^{-1})	1	4	10	20	90
$(\Delta \kappa_W)_{\rm in}$	0.26%	0.12%	0.073%	0.050%	0.023%
$(\Delta \kappa_Z)_{ m in}$	2.4%	1.1%	0.65%	0.46%	0.20%
$(\Delta \kappa_Z)_{1\mu}$	1.7%	1.5%	1.5%	1.5%	1.5%

17

HHH	/ WV	WI	HH co	upl	ings:	
$\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$			н М Н Н	W- W+	YK, H	HH → bb, bb
$\sigma = \sigma_{\rm SM} \begin{bmatrix} {}^{\rm (a)} \\ 1 + r_1 \Delta t \end{bmatrix}$	-	$\Delta \kappa_3$ -			$\stackrel{(c)}{_{4}}\left(\Delta\kappa_{W_{2}}\right)^{2}+r_{5}$	$(\Delta \kappa_3)^2]$
	$\frac{m_{HH} \text{ [GeV] } \sigma}{[0, 350)}$	$\frac{\text{SM}}{15}$	r_1 r_2 r_3 r_3 r_2 r_3 r_3 r_2 r_3 r_3 r_3 r_4 r_2 r_3 r_3 r_4 r_4 r_2 r_3 r_4 r_5 r_5 r_6			
	[0, 350) [350, 450)	24	-3.4 -1.2 5.2 7			
	[350, 450) [450, 550)	24	-4.0 - 0.91 4.6			
	[450, 550) [550, 650)	24 21	-4.6 - 0.70 4.7			
	[650, 750)	17	-5.3 - 0.60 5.1			
	[050, 150) $[750, 950)$	24	$-6.9 - 0.52 \ 6.3$			
	[950, 1350]	24 23	$-0.9 - 0.32 \ 0.37$ $-11 \ -0.47 \ 8.7 \ 1$			
	[930, 1330) [1350, 5000)	15	-11 - 0.47 8.71 -18 - 0.30 7.2 2			

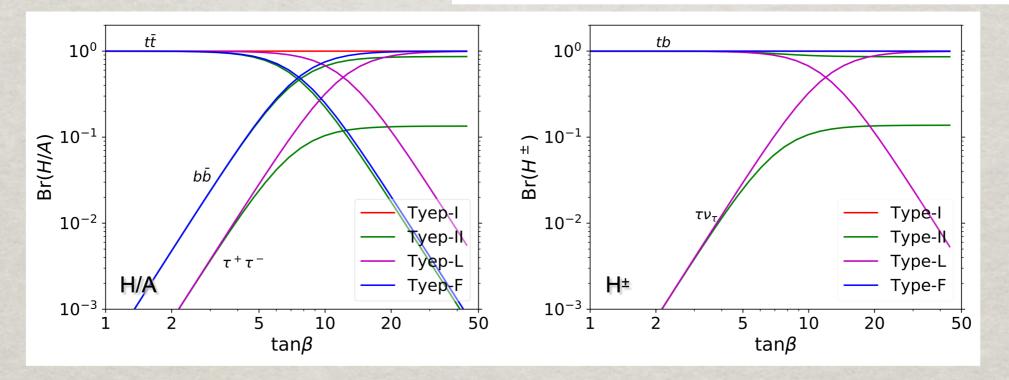

TABLE V: Cross sections of the inclusive $\mu^+\mu^- \to HH + X \to b\bar{b} \ b\bar{b} + X$ in different m_{HH} ranges as the coefficients corresponding to the five terms in Eq. (25) with $\sqrt{s} = 10$ TeV.

\sqrt{s} (TeV)	3	6	10	14	30
benchmark lumi (ab^{-1})	1	4	10	20	90
$(\Delta \kappa_{W_2})_{ m in}$	5.3%	1.3%	0.62%	0.41%	0.20%
$(\Delta \kappa_3)_{ m in}$	25%	10%	5.6%	3.9%	2.0%

\sqrt{s} (lumi.)	$3 \text{ TeV} (1 \text{ ab}^{-1})$	6 (4)	10 (10)	14 (20)	30 (90)	Compariso	
$WWH \ (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.05 %	0.023%	0.1% [41]	CLIC
$\Lambda/\sqrt{c_i}$ (TeV)	4.7	7.0	9.0	1	16	(68% C.L.)	
$ZZH (\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0. 6%	0.21%	0.13% [17]	CEPC
$\Lambda/\sqrt{c_i}$ (TeV)	2.1	2.6	3.2	3.6	5.3	(95% C.L.)	CLIC
$WWHH \ (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0.1%	0.20%	5% [36]	
$\Lambda/\sqrt{c_i}$ (TeV)	1.1	2.1	3.1	38	5.5	(68% C.L.)	CLIC
$HHH (\Delta \kappa_3)$	25%	10%	5.6%	3.9/	2.0%	5% [22, 23]	ECC 11
$\Lambda/\sqrt{c_i}$ (TeV)	0.49	0.77	1.0	1.2	1.7	(68% C.L)	FCC-hh

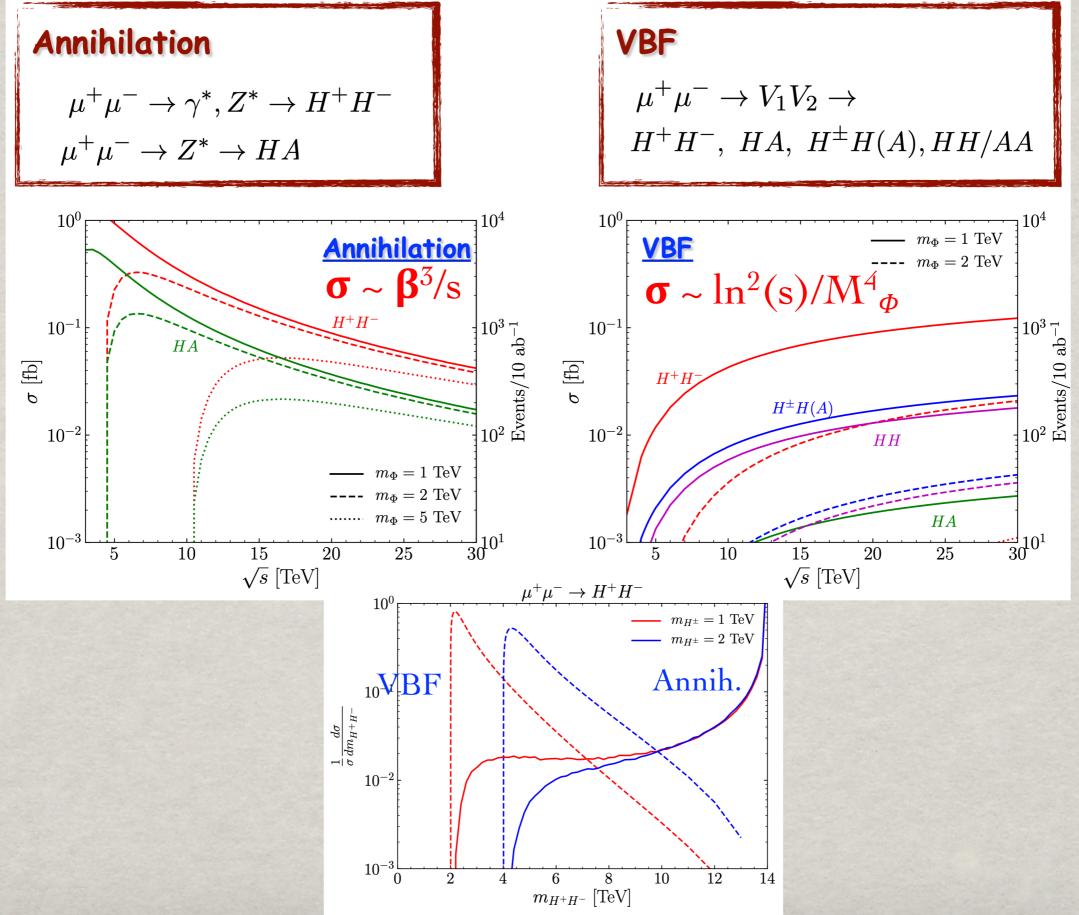
Table 7: Summary table of the expected accuracies at 95% C.L. for the rate variety of muon collider collider energies and luminosities.

pings at a


Heavy Higgs bosons in 2HDM

after EWSB, 5 physical Higgses

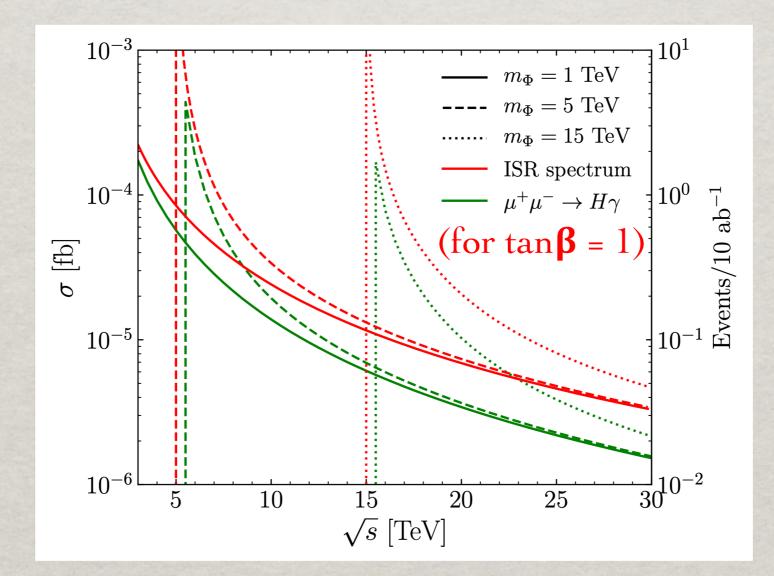
CP-even Higgses: h, H , CP-odd Higgs: A, Charged Higgses: H[±]


$$v_u^2 + v_d^2 = v^2 = (246 \text{GeV})^2$$
$$\tan \beta = v_u / v_d$$

Types	Φ_1	Φ_2	κ^u_A	κ^d_A	κ^e_A
Type-I		u,d,ℓ	\coteta	$-\coteta$	$-\coteta$
Type-II	d,ℓ	u	\coteta	aneta	$\tan\beta$
Type-L	ℓ	u,d,	\coteta	$-\coteta$	$\tan\beta$
Type-F	d	u,ℓ	\coteta	aneta	$-\coteta$

TH, S.L. Li, S. Su, W. Su, Y.-C. Wu, to appear

Pair production



Discriminating 2HDM models:

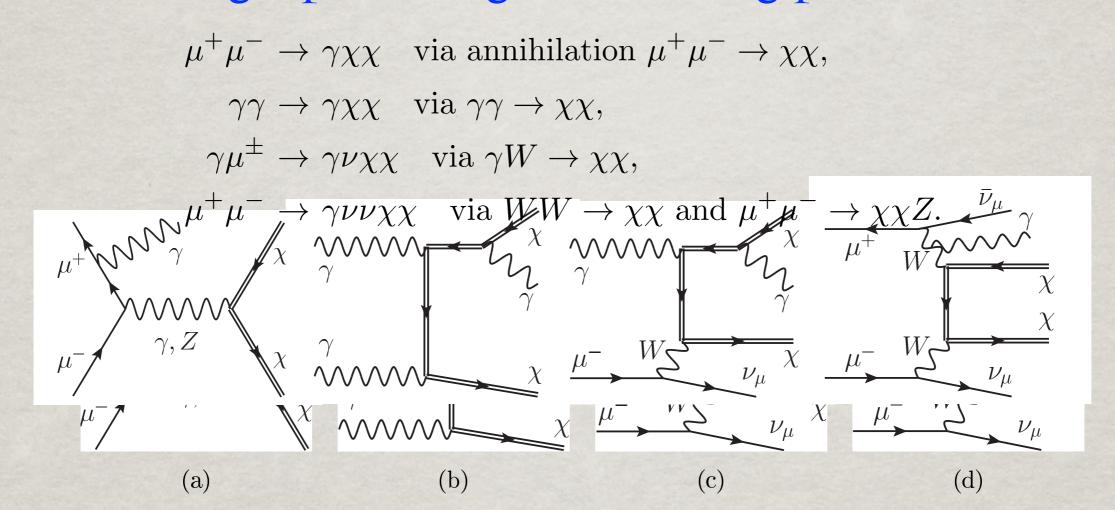
	production	Type-I	Type-II	Type-F	Type-L		
	H^+H^-		$tar{t}$				
small $\tan \beta < 5$	HA/HH/AA	$tar{t},tar{t}$					
	$H^{\pm}H/A$		tł				
	H^+H^-		$tar{b},ar{t}b$	$tb, au u_{ au}$			
intermediate ten B	HA/HH/AA	$tar{t}, tar{t}$ $tar{t}, bar{b}$		$t\bar{t}, \tau^+\tau^-$			
$ $ intermediate tan β	$H^{\pm}H/A$	$tb, t\bar{t}$ $tb, t\bar{t}; tb, b\bar{b}$		-	$tb, t\bar{t}; tb, \tau^+\tau^-;$		
				$\left \tau u_{ au}, t \overline{t}; \ \tau u_{ au}, \tau^+ \tau^- \right $			
	H^+H^-	$tar{b},ar{t}b$	$tb, tb(au u_{ au})$	$tar{b},ar{t}b$	$ au^+ u_ au, au^- u_ au$		
large $\tan \beta > 10$	HA/HH/AA	$tar{t},tar{t}$	$bar{b}, bar{b}(au^+ au^-)$	$bar{b}, bar{b}$	$ au^+ au^-, au^+ au^-$		
	$H^{\pm}H/A$	$tb, tar{t}$	$tb(\tau\nu_{\tau}), b\overline{b}(\tau^{+}\tau^{-})$	$tb, bar{b}$	$ au^{\pm} u_{ au}, au^{+} au^{-}$		

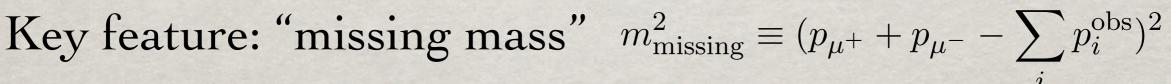
Table 6. leading signal channels of Higgs pair production for various 2HDMs in different regions of small, intermediate and large $\tan \beta$. Channels in the parenthesis are the sub-leading channels.

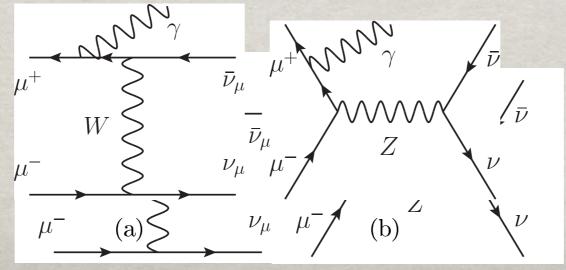
Radiative returns: Pushing the heavy mass reach $\mu^+\mu^- \to \gamma H$ $\sigma = 2 \int dx_1 f_{\ell/\ell}(x_1) \hat{\sigma}(\tau = x_1) = \frac{\alpha Y_{\mu}^2}{4s} \frac{s + m_H^4/s}{s - m_H^2} \log \frac{s}{m_{\mu}^2}$

• WIMP (SUSY) DM

Consider the "minimal EW dark matter": The lightest neutral component in an EW multi-plet

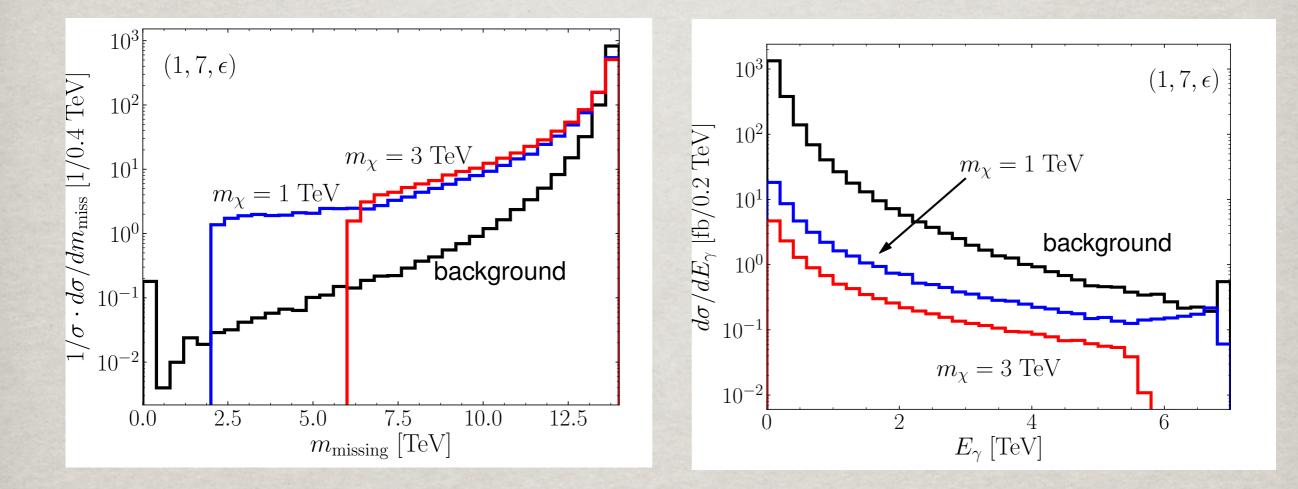

- Interactions well defined \rightarrow pure gauge
- Mass upper limit predicted \rightarrow thermal relic abundance


Model		Thern	Therm 5σ discovery coverage (TeV)				
(color, n, Y)		target	et mono- γ mono- μ		di- μ 's	disp. tracks	
(1,2,1/2)	Dirac	1.1 TeV		2.8		1.8 - 3.7	
(1,3,0)	Majorana	2.8 TeV		3.7		13 - 14	
$(1,3,\epsilon)$	Dirac	2.0 TeV	0.9	4.6		13 - 14	
(1,5,0)	Majorana	11 TeV	3.1	7.0	3.1	10 - 14	
$(1,\!5,\!\epsilon)$	Dirac	6.6 TeV	6.9	7.8	4.2	11 - 14	
(1,7,0)	Majorana	23 TeV	11	8.6	6.1	8.1 - 12	
$(1,7,\epsilon)$	Dirac	16 TeV	13	9.2	7.4	8.6 - 13	


SU(3)	xSU	$(2)_{\rm L} \mathbf{x}$	U	(1)	Y
× /	C			· /	-

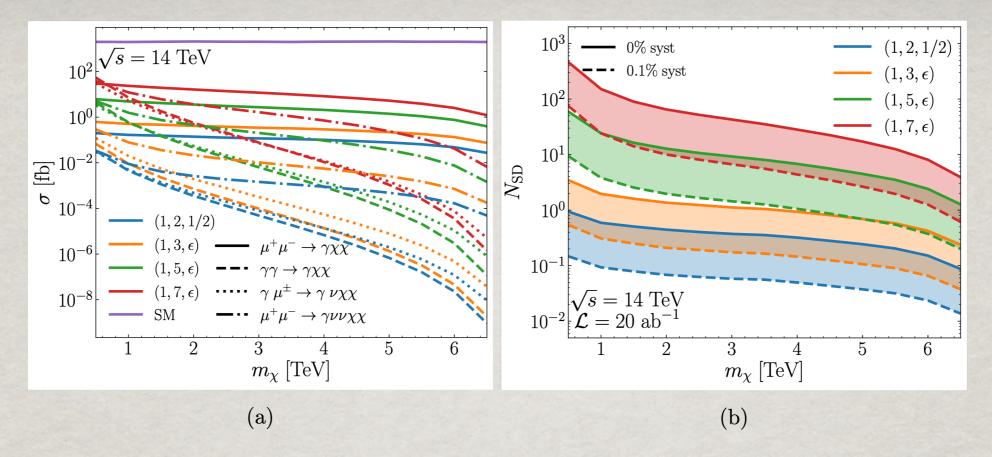
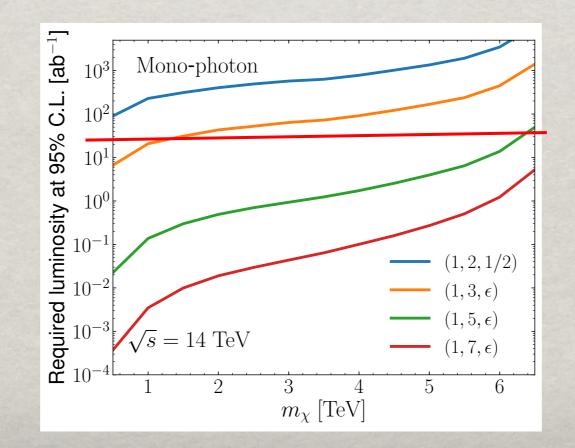
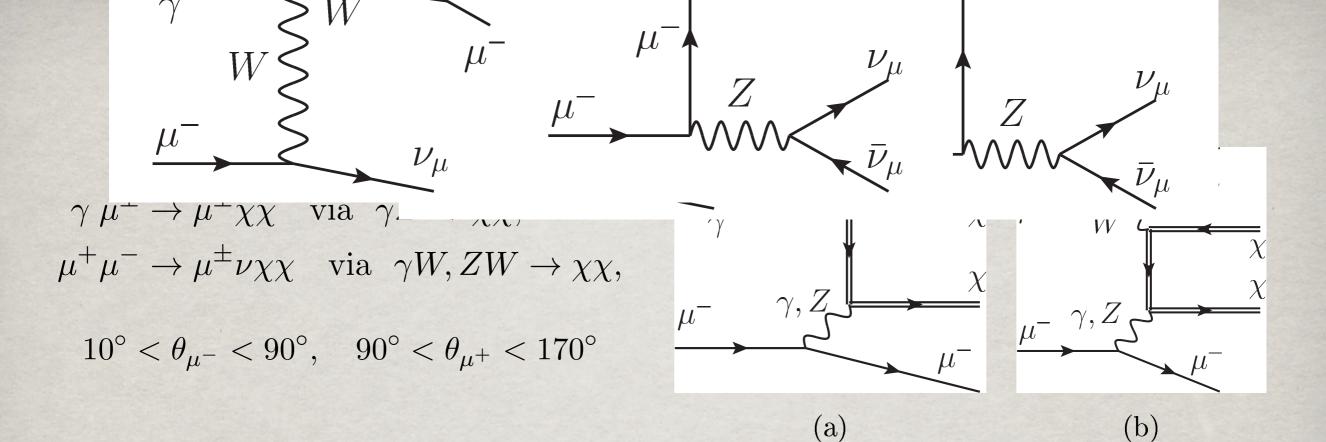
TH, Z. Liu, L.T. Wang, X. Wang, arXiv:2009.11287

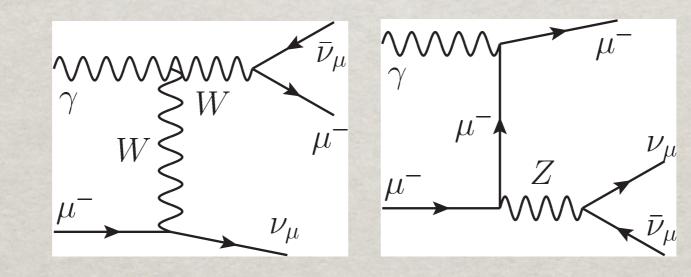
Mono-photon signal: A single photon against missing particles



$$m_{\text{missing}}^2 \equiv (p_{\mu^+} + p_{\mu^-} - p_{\gamma})^2 > 4m_{\chi}^2$$

$$\mathbf{E}_{\gamma} < (s - 4m_{\chi}^2)/2\sqrt{s},$$


Figure 3: (a) Total cross section and (b) the significance defined in Equation 3.9 for a pair of EW multiplets plus a mono-photon at a muon collider with $\sqrt{s} = 14$ TeV. In (b) the solid and dashed lines correspond to the systematic uncertainties of 0% and 0.1%, respectively.

Again, large missing mass: SM backgrounds: $\gamma \ \mu^{\pm} \rightarrow \mu^{\pm} \nu \bar{\nu}$,

 $m_{\rm missing}^2 \equiv (p_{\mu^+} + p_{\mu^-} - \sum p_i^{\rm obs})^2$

(b)(a)As well as $\gamma \ \mu^{\pm} \rightarrow \gamma \ \mu^{\pm}$ with a γ gone missing

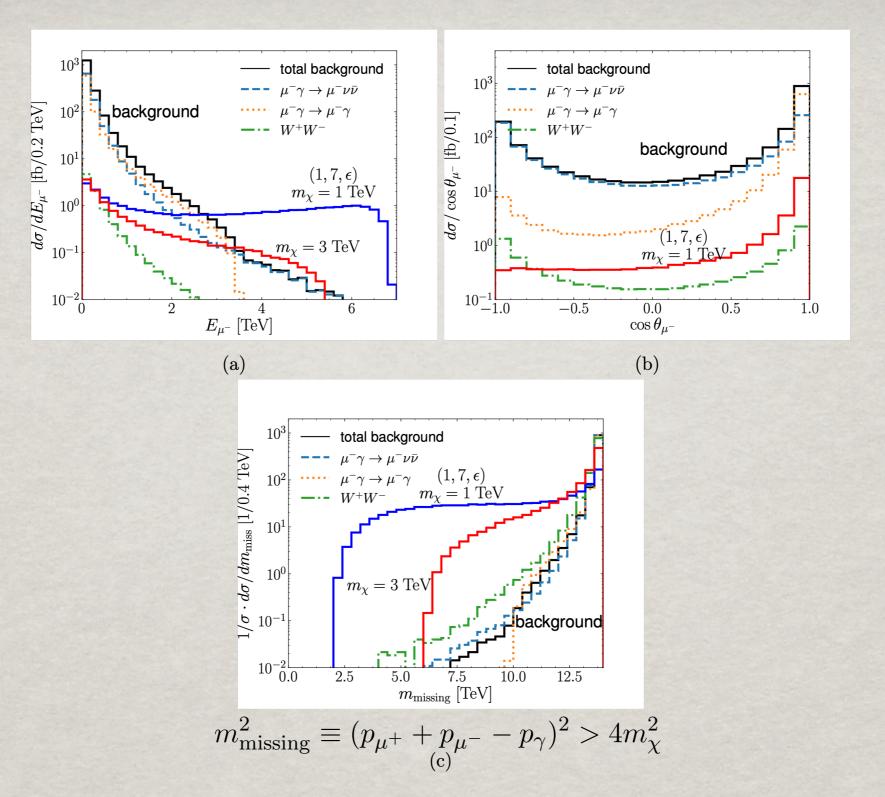


Figure 8: (a) The energy distributions of the μ^- at $\sqrt{s} = 14$ TeV, for the backgrounds and two representative benchmarks for 7-plet $(1, 7, \epsilon)$ with $m_{\chi} = 1$ TeV (blue) and 3 TeV (red), respectively; (b) the angular distributions of the μ^- at $\sqrt{s} = 14$ TeV, for the backgrounds and 7-plet $(1, 7, \epsilon)$ (red) with $m_{\chi} = 1$ TeV; (c) normalized missing-mass distributions for the signals and backgrounds.

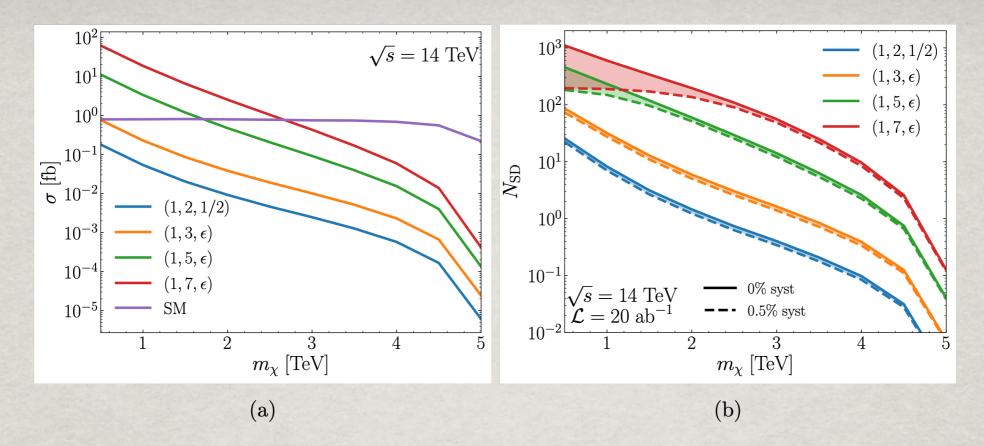
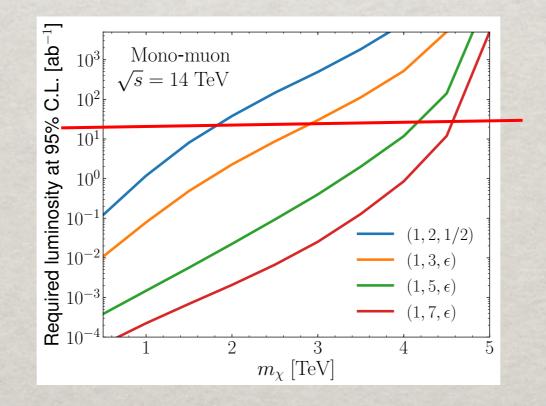
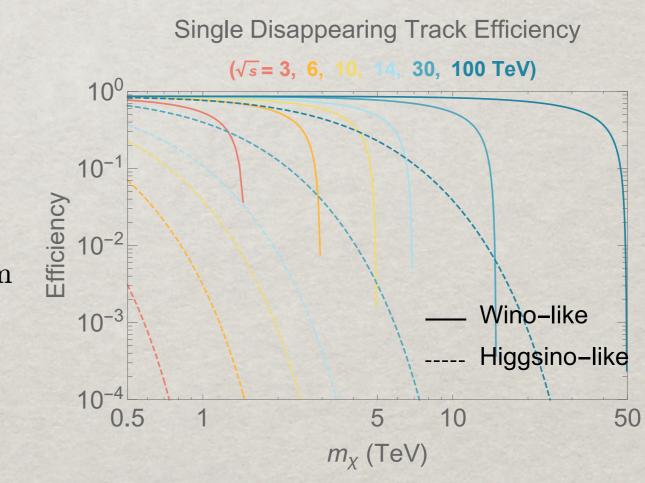
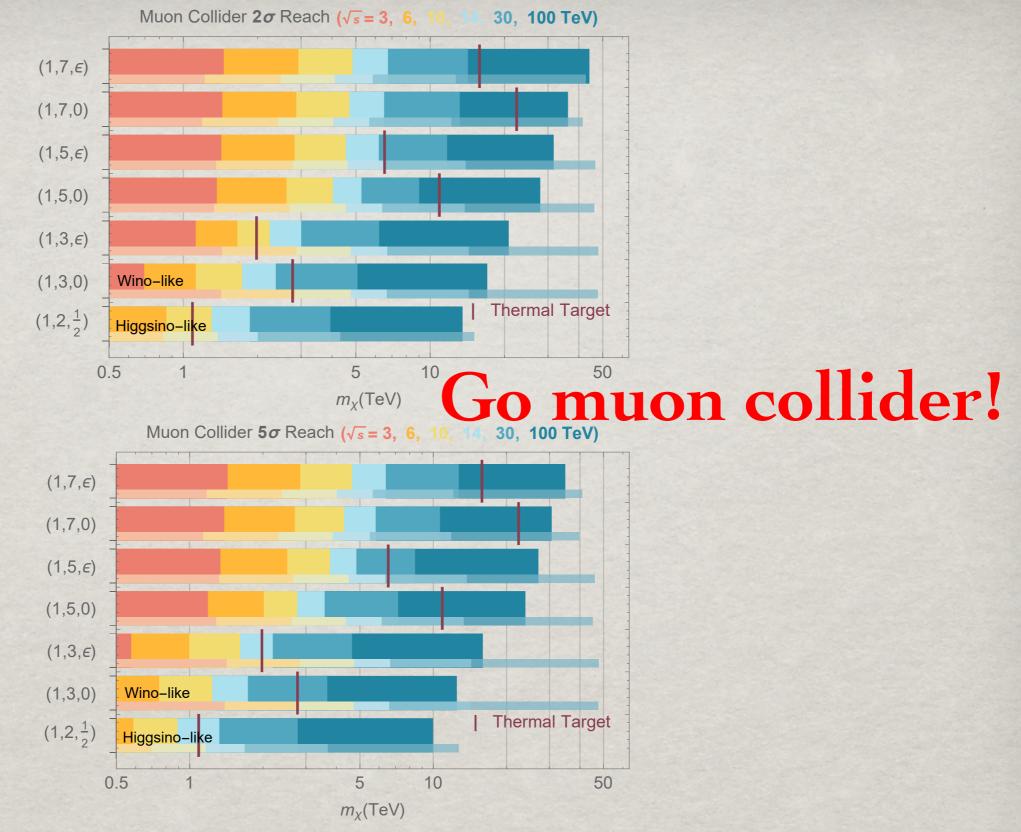




Figure 9: (a) Total cross section and (b) the significance defined in Equation 3.9 for a pair of EW multiplets plus a mono-muon at a muon collider with $\sqrt{s} = 14$ TeV. In (b), the solid and dashed lines correspond to the systematic uncertainties of 0% and 0.5%, respectively.



$$\begin{split} \text{Missing-track signal for LLP:} \\ \text{A single photon plus missing tracks} \\ \delta m &= \frac{g^2}{4\pi} m_W \sin^2 \frac{\theta_W}{2} \approx 160\text{-}170 \text{ MeV.} \\ c\tau(\chi^Q \to \chi^{Q-1}\pi^+) \simeq c\tau(\pi^\pm) \frac{\kappa_W m_\pi m_\mu^2}{16\Delta m_{Q,Q-1}^3} \left(1 - \frac{m_\mu^2}{m_\pi^2}\right)^2 \left(1 - \frac{m_\pi^2}{\Delta m_{Q,Q-1}^2}\right)^{-1/2} \\ &= 5.7 \kappa_W \left(1 - \frac{m_\pi^2/(134 \text{ MeV})^2}{\Delta m_{Q,Q-1}^2/(165 \text{ MeV})^2}\right)^{-1/2} \left(\frac{165 \text{ MeV}}{\Delta m_{Q,Q-1}}\right)^3 \text{ cm} \end{split}$$

$$\epsilon_{\chi}(\cos\theta,\gamma,d_T^{\min}) = \exp\left(\frac{-d_T^{\min}}{\beta_T\gamma c\tau}\right)$$

with a reconstruction cut $d_T^{\min} = 5$ cm

possible to cover the thermal targets of doublet and triplet with a 10 TeV muon collider. Higher energies, 14 TeV-75 TeV, would ensure a 5σ reach above the thermal targets for the higher EW multiplets. We also estimate the reach of a search for disappearing tracks, demonstrating the potential significant enhancement of the sensitivity.