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Alternative acceleration concept (positron-based) being also explored

* Opportunity: provides a versatile and powerful tool for HEP exploration

* Challenges: design a system (accelerator+detector) the meets physics
requirements

» Different stages of design depending on CoM energy
picture

— Quite advanced conceptual design for Higgs factory, 1.5 TeV

- Good ideas of roadmap to scale up to ~ 6 TeV (and maybe to ~10 TeV)
- In the context of Snowmass, being investigated up to 14 TeV

- Beyond that, significant new challenges require fresh R&D
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- Beyond that, significant new challenges require fresh R&D
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More info in e.g.

JINST 13 P10024, Beam-Induced BOCkgr'Ound (BIB)

arxiv:1905.03725

* Detailed accelerator design studies are needed to understand the
environment around the interaction point <
— Most studies presented focus on 1.5 TeV {
-25 *
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BIB characterization
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- Energy deposit (especially for low-energy y/n interaction in Si)

— Majority of particles with low transverse momentum

* Ongoing studies to reproduce these results and study different Vs
- Competing effects increasing Vs: larger energy but longer p lifetime in lab frame
— Need accelerator designs for different energies to study how BIB evolves

* Re-optimization and new handles being explored now!
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Detector design, /s=1.5 TeV

* Heavily based on CLIC detector, with modification for BIB suppression

* Detector optimization is one of the goals within the Snowmass timescale
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Vertex Detector (VXD)

= 4 double-sensor barrel layers 25x25pum?

= 4+4 double-sensor disks 25x25um?

Inner Tracker (IT)

= 3 barrel layers 50x50pum?

= 7+7 disks

Outer Tracker(OT)

= 3 barrel layers 50x50pum?

» 4+4 disks

Electromagnetic Calorimeter (ECAL)

= 40 layers W absorber and silicon pad
sensors, 5x5 mm?

Hadron Calorimeter (HCAL)

= 60 layers steel absorber & plastic
scintillating tiles, 30x30 mm?

Nozzle design limits
acceptance to 8=10°

- different \'s might allow
different designs

600
Z,cm



Software

* Need both fast and full simulation to simultaneously meet challenges of a
vast physics program exploration and detailed performance assessment

* Fast simulation: based on Delphes (card)

— Currently based on mix of studies so far and assumptions
— Goal to progressively validate those assumptions with full simulation
* Full Simulation/Reconstruction based on ILCSoft (MuColl github)
- Includes beam-induced background effects
- Snowmass tutorial and twiki page

- Available also through containers on cvmfs for easy setup

L) Full Sim
Full Sim optimization / v2.0
1.
VA0 perf. studies
phys. studies
L nterplay Fast/Full Sim
v :
Fast Sim [possible path]

"proven” performance

Fast Sim
assumed performance
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https://snowmass21.org/montecarlo/energy
https://github.com/MuonColliderSoft/
https://indico.fnal.gov/event/45187/
https://confluence.infn.it/display/muoncollider/Muon+Collider+Home#space-menu-link-content

Software status

* Tagged a v1.0 version of the detector (twiki)

- Ready to be used to perform realistic physics studies

« Simulation quite well established and easy to tweak

- Some work on more realistic digitization in progress

e Current reconstruction software for basic performance in place

- Tracks, jets, b-tagging, muon combined reconstruction (more work in progress)

— Electrons, tau dedicated reconstruction need work

* Reconstruction takes a long time to run with realistic BIB

- Dominated by track reconstruction, only partial optimization done so far
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https://confluence.infn.it/display/muoncollider/Software

Inner Tracker performance

* Establishing basic performance and ability to reconstruct physics objects
in presence of beam-induced background
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Tracker design and optimization

* Several optimization studies performed and in progress
( Position: \Te?x: 50x50um*/75x75um’, Inner: 7summ. Outer: Wom
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Calorimeter (Jets) performance

* BIB deposits a large amount of energy in the calorimeter

- Take advantage of LHC experience with pile-up suppression techniques

— Timing and longitudinal shower distribution as key discriminant
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Muon reconstruction

 Combined tracker + muon reconstruction
* Large occupancy due to BIBs in the forward (endcap) detector

* Further studies in progress
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More info (link)

3 lindars, B, Lucsnei Trigger and DAQ considerations

Bunched beam with O(10 pys) bunch spacing — 100 kHz

A critical item for transferring data is the tracker

- For the given tracker occupancy — up to O(50Gbps) of data per module

— About a factor 10 of HL-LHC designs

- In-chip data reduction through logic might allow to lower this requirement
e e.g. cluster timing, shape, double-layers logic, energy threshold, etc..

Total data flux approx (tracker-only, assumed dominant) ~ 30Tbps

Trigger-less readout is likely a considerable option!
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https://indico.cern.ch/event/969815/contributions/4098174/attachments/2154742/3634355/WS_Pitt_MC_detector_V2.pdf

e NG -conventional detector requirements

CPM #131

* Awareness for requirements that have been less prominent historically

- e.g. Long-lived particles, boosted object reconstruction

» Significant work needed to adapt detector and test designs with realistic
reconstruction algorithms in full simulation

— Several interested people have started, but landscape is huge!

. Readout window/timing selections Example slide from CPM#131
= 06— )
S [ Vs=3TeV —— m=0.5TeV, max p=0.94 General Requirements
% 0.5— —— m=1TeV, max  =0.75 e Hermiticity
E - m = 1.45 TeV, max B =026 o Different geometry choices that provide similar hermeticity for prompt particles can differ
E drastically in their coverage of particles not originating at the interaction point
04— e Geometry
[ o Interplay of geometry choice with hermeticity, trigger-capabilities, and even data-rate reduction
- need to keep in mind LLP needs
03— VXD + IT +OT e High granularity at large radius
- o ldentifying decays of LLP in various sub-systems away from the interaction point and distinguish
[ them from detector-specific backgrounds (including beam-induced backgrounds)
02— e Particle ID
L o Measurement of ionization energy loss and timing can boost particle ID capabilities and offer
I~ unique handles for LLP direct identification
01— e Timing (more later)
= j e Dataflow/software must be defined to not prevent LLP searches
. L et s e | o Inclusive initial reconstruction and/or nimble re-reconstruction

Corrected hit time[ns]
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https://indico.fnal.gov/event/44870/sessions/16353/#20201006

Organization

* Building on top of what was studied long ago (e.g. MAP)

* Several European institutes involved

— Most of the recent results shown today come from their work

- Several ltalian institutions (Padova, Torino, Trieste, ...), CERN, DESY, etc..
* Large interest in the US ramping up thanks to the Snowmass process

— Both from labs as well as universities

- Results presented in both Energy and Instrumentation frontiers,as appropriate
- Starting to assemble MC needs for larger sample productions

- Mattermost channel and informal bi-weekly chats

- New Snowmass AF-EF-TF “Muon Collider Forum”

 Join #muon-collider-forum snowmass slack channel (link)

e Critical to maintain direct coordination of activities across US and with
European Collaborators
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https://join.slack.com/share/zt-k1xh1kec-StxhX7N13RoAuWDrJZlgFw?cdn_fallback=1

Conclusions

* The Muon Collider environment exposes unique challenges for detectors

Revived effort in producing a realistic detector design, simulation and
reconstruction software

— Basic setup available, together with tutorial and configurations to easily setup
new studies

Basic performance are being established, but significant work is needed
to bring it to a level comparable to more mature designs for other colliders

- Alot of freedom in experimenting and for creative solution in such a unique
environment

Plenty of topics awaiting for new people to inject their expertise and ideas

Do not hesitate to get in contact if you'd like contribute or learn more!
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BACKUP
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Radiation environment

. Expected fluence < HL-LHC N e e

+ HL-LHC < Expected dose < FCC-hh —

» Still expecting radiation hardness il 3
to play a significant role, but unlikely 20
to be a major problem i

* Leaves more flexibility in adapting i ,
detector design to such requirements 40 ) T
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Neutron fluence (cm”-2 per bunch x-ing)
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