

Outline 2 -3.8mIntroduction eRHIC - Machine design aspects 5.2m> General design considerations 9.0mRing-ring design IR design \triangleright **Ring-linac** design <u>, A</u> Polarimetry -3m+3meRHIC - Detector design aspects $\sim 4.5m$ > General considerations > Design 1: Forward physics (unpolarized eA MPI-Munich group) > Design 2: General purpose (unpolarized/polarized ELECTRon-A) Summary and Outlook DIS2005, 04/30/2005 Bernd Surrow Madison, WI

- First detailed document (252 pages) reporting on the eRHIC accelerator and interaction region (IR) design studies
- Collaborative effort between BNL, MIT-Bates, BINP and DESY

□ Goal:

- Develop an initial design for eRHIC
- Investigate accelerator physics issues most important to its design
- Evaluate luminosities that could be achieved with minimal R&D effort including IR design
- Identify specific R&D extensive accelerator aspects which could lead to significantly higher luminosities
- Review planned in June 2005
- ZDRO WWW-link:

DIS2005, 04/30/2005 Madison, WI

Editors: M. Farkhondeh (MIT-Bates) and V. Ptitsyn (BNL)

http://www.bnl.gov/eic/

Bernd Surrow

- General design considerations
 - □ Provide ep/eA collisions
 - Polarized (transverse/longitudinal up to 70%) electron (5-10GeV)/positron (10GeV)
 - Polarized (transverse/longitudinal up to 70%) protons (50-250GeV) and potentially polarized ³He
 - Light and heavy nuclei (e.g. Au) 100GeV/u
 - Main design option: 10GeV electron/positron storage ring
 - Electron beam injector system: Recirculating linac and polarized electron source
 - Polarized positron beam at 10GeV: Self-polarization mechanism in storage ring
 - Luminosities: ep (10³² 10³³cm⁻²s⁻¹) (10GeV on 250GeV) and eA (10³⁰ 10³¹cm⁻²s⁻¹) 10GeV on 100 GeV/u)
 - Alternative design option: Energy recovery superconducting linac (ERL)
 - Preliminary estimates suggest:ep (~10³⁴cm⁻²s⁻¹) and eA (~10³²cm⁻²s⁻¹)
 - Significant R&D effort necessary for polarized electron source and energy recovery technology for high energy and high current beams (Long-term)

Variable centre-ofmass energy: 30-100GeV

Ring-ring design (1)

□ RHIC:

- 3834m circumference
- 10.8-100GeV/u ions
- 25-250GeV polarized protons

Electron storage ring design

- Intersection with RHIC blue beam
- RHIC Yellow beam: 3m excursion around IR region
- Injection system: Polarized electron source and recirculating linac including conversion system for positrons
- Storage energy: 5-10GeV (electrons)
- Self-polarization of positrons in storage ring (20min. at 10GeV) injected at 10GeV
- Spin rotator setup in e-ring and blue RHIC ring around eRHIC IR region

Required modifications at RHIC:

- Electron cooling system: Achieve and maintain small beam emittances
- Increase of total current: Increasing the number of bunches from 120 (present design) to ultimately 360 bunches consistent with RF frequency of the present RF system
- Additional spin rotator magnets in ep interaction region

DIS2005, 04/30/2005 Madison, WI

Ring-ring design (2)

- Luminosity considerations:
 - General expression:

$$\mathcal{L} = \frac{f_c n_i n_e}{4\pi\sigma_x \sigma_y}$$

- Luminosity limitation due to beam-beam effects and interaction region magnet aperture limitations
- Luminosity in terms of beam-beam parameters (ξ) and rms angular spreads in the IR region (σ):

 $=\sigma_y/\sigma_x$ Beam aspect ratio at IP

- For protons: Limit for beam-beam parameter: 0.02 (Experience from other proton machines and initial experience at RHIC)
- For electrons: Limit for beam-beam parameter: 0.08 at 10GeV (Beam-beam simulations and experience from other electron machines)
- Matched beam sizes at the IP (IR design: Low beta focusing for elliptical beams K=1/2)
- Collision frequency: With 120 bunches in electron ring and 360 bunches in RHIC: f_c=28.15MHz

DIS2005, 04/30/2005 Madison, WI

Ring-ring design (3): ep beam parameters

	High energ	y setup	Low energy setup		
	p e		р	e	
Energy (GeV)	250	10	50	5	
Bunch intensity (10 ¹¹)	1	1	1	1	
Ion normalized emittance $\pi \text{ mm} \cdot \text{mrad}, x/y$	15/15		5/5		
Rms emittance, nm, x/y	9.5/9.5	53/9.5	16.1/16.1	85/38	
β*, cm, x/y	108/27	19/27	186/46	35/20	
Beam-beam parameters, x/y	0.0065/ 0.00325	0.029/ 0.08	0.019/ 0.0095	0.036/ 0.04	
$\mathbf{k} = \varepsilon_{\mathbf{y}} / \varepsilon_{\mathbf{x}}$	1	0.18	1	0.45	
Luminosity (10 ³² cm ⁻² s ⁻¹)	4.4		1.5		
2005	No cooling 2 p-p IPs a	ssumed	Cooling needed No p-p IPs allowed		

Ring-ring design (4): eAu beam parameters

	High energ	y setup	Low energy setup		
	Au e		Au	е	
Energy (GeV/u)	100	10	100	5	
Bunch intensity (10 ¹¹)	0.01	1	0.0045	1	
Ion normalized emittance π mm \cdot mrad, x/y	6/6		6/6		
Rms emittance, nm, x/y	9.5/9.5	54/7.5	9.5/9.5	54/13.5	
β*, cm, x/y	108/27	19/34	108/27	19/19	
Beam-beam parameters, x/y	0.0065/ 0.0035	0.0224/ 0.08	0.0065/ 0.0035	0.02/ 0.04	
$k = \epsilon_y / \epsilon_x$	1	0.14	1	0.25	
Luminosity (10 ³⁰ , cm ⁻² s ⁻¹)	4.4		2.0		

⇒ Electron cooling of Au beam is required to achieve and maintain Au emittance values!

DIS2005, 04/30/2005 Madison, WI Bernd Surrow

IR design (1)

- □ Beam separation
 - Cross-angle could in principle be used:
 - Required angle: 5mrad
 - Use crab-crossing scheme (Rotate ion bunch into direction of electron beam): Required deflecting RF voltage: V⊥=14.4MV ⇒ Factor 10 larger then for KEKB crab cavities
 - Therefore: Design IR region with zero crossing angle
 - S over C shaped bending preferred
 - Initial design: Dipole winding in the superconducting electron low-β quadrupoles
 - Problem: ±1m machine element free region

9

DIS2005, 04/30/2005 Madison, WI

IR design (2)

- Beam separation cont.
 - Recent idea: Dipole coils superimposed on detector solenoid
 - Advantage: ±3m machine element free region
 - Preliminary estimate of luminosity reduction: Factor 2
- Accomodation of synchrotron radiation generated by beam separation
- Beam focusing
 - Electron beam: Superconducting quadrupole triplet configuration around IR (ZDRO design: ±1m - Recent idea: ±3m)
 - Hadron beam: Normal conducting septumquadrupole triplet configuration (ZDRO design: ±5m - Recent idea: ±7.2m)

C. Montag, B. Parker

Bernd Surrow

Ring-linac design (1)

- Two possible designs are presented in the ZDR Appendix A (V. Litvinenko et al.)
- Electron beam is transported to collision point(s) directly from superconducting energy recovery linac (ERL)
- □ Features:
 - High degree of polarization at any energy (>80%)
 - Machine elements free region approx. ±5m
 - Simpler IR region design: Round beams possible
 - Upgrade to higher energies beyond 10GeV possible
 - Multiple interaction regions
 - No positrons

DIS2005, 04/30/2005 Madison, WI

Ring-linac design (2)

- □ High luminosity:
 - No beam-beam limitation for electron beam (Use "fresh" electron beam)
 - Up to 10³⁴ cm⁻²s⁻¹ for ep and 10³² cm⁻²s⁻¹ for eAu

12

R&D issues:

- High current polarized electron source
- Energy recovery technology for high energy and high current beams

DIS2005, 04/30/2005 Madison, WI

General considerations (1)

General considerations (2)

- Measure precisely scattered electron over large polar angle region (Kinematics of DIS reaction)
- **Tag electrons under small angles** (Study of transition region: DIS and photoproduction)
- Measure hadronic final state (Kinematics, jet studies, flavor tagging, fragmentation studies, particle ID)
- Missing E_T for events with neutrinos in the final state (W decays) and Physics beyond the SM (Hermetic detector)
- Zero-degree photon detector to control radiative corrections
- Tagging of forward particles (Diffraction and nuclear fragments) such as...:
 - Proton remnant tagger
 - Zero degree neutron detector
- □ Challenge to incorporate above in one detector: Focus on two specific detector ideas!

DIS2005, 04/30/2005 Madison, WI Bernd Surrow

Design 1: Forward physics (unpolarized eA MPI-Munich group) (1)

Detector concept

- Compact detector with tracking and central EM calorimetry inside a magnetic dipole field and calorimetric end-walls outside:
 - Bend forward charged particles into detector volume
 - Extend rapidity compared to existing detectors
- Tracking focuses on forward and backward tracks
- No tracking in central region

I. Abt, A. Caldwell, X. Liu, J. Sutiak, MPP-2004-90, hep-ex 0407053

Bernd Surrow

Design 1: Forward physics (unpolarized eA MPI-Munich group) (2)

□ Tracking system:

- High-precision tracking
 with Δp_T/p_T ~ 2%
- Angular coverage down to η ≈ 6 over the full energy range
- Concept: 14 Si-strip tracking stations (40 X 40 cm)
- Assumed hit resolution:
 20µm
- Momentum resolution from simulations: Few percent!

DIS2005, 04/30/2005 Madison, WI Positron Hemisphere with 14 tracking planes up to -350 cm

The design is symmetric around the interaction point.

Each plane is approximately 40cm x 40cm consisting of two double-sided silicon detectors plus support.

> Proton Hemisphere with 14 tracking planes up to +350cm

I. Abt, A. Caldwell, X. Liu, J. Sutiak, MPP-2004-90, hep-ex 0407053 17

Bernd Surrow

Madison, WI

eRHIC - Detector design aspects

- Design 1: Forward physics (unpolarized eA MPI-Munich group) (3)
 - Calorimeter system:
 - Compact EM calorimeter systems: Si-Tungsten
 - Forward hadron calorimeter: Design follows existing ZEUS calorimeter

I. Abt, A. Caldwell, X. Liu, J. Sutiak, MPP-2004-90, hep-ex 0407053 18

Bernd Surrow

- Design 1: Forward physics (unpolarized eA MPI-Munich group) (4)
 - □ Acceptance:
 - Full tracking acceptance for $|\eta| > 0.75$ No acceptance in central region $|\eta| < 0.5$
 - Q² acceptance down to 0.05GeV² (Full W range) Full acceptance down Q²=0GeV² for W>80GeV
 - High x: Electron (Q²) and Jet (x) to determine event kinematics

I. Abt, A. Caldwell, X. Liu, J. Sutiak, MPP-2004-90, hep-ex 0407053

Madison, WI

J. Pasukonis, B.S.

- Design 2: General purpose (unpolarized/polarized ELECTRon-A) (3)
 - Simulated eCa event (VNI)

J. Pasukonis, B.S.

Design 2: General purpose (unpolarized/polarized ELECTRon-A) (4)

- ELECTRA detector simulation and reconstruction framework:
 - GEANT simulation of the central detector part (tracking/calorimetry) available: Starting point
 - Calorimeter cluster and track reconstruction implemented
 - Code available through CVS repository:

http://starmac.lns.mit.edu/~erhic/electra/

- Help welcome on:
 - Evaluate and optimize detector configuration[#]
 - Design of forward tagging system and needed particle ID systems for various exclusive processes
 - In particular for eA events: Optimize forward detector system for highmultiplicity environment

ELECTRA reconstruction

DIS2005, 04/30/2005 Madison, WI Bernd Surrow

Machine design:

- First detailed document (252 pages) reporting on the eRHIC accelerator and interaction region (IR) design studies
 - Ring-ring option
 - Linac-ring option
- Collaborative effort between BNL, MIT-Bates, BINP and DESY

Detector design:

- □ Well-developed design of a Forward detector system focusing on low-x / high-x physics
- Design of a compact detector started: Detector simulation and reconstruction framework: ELECTRA (CVS repository http://starmac.lns.mit.edu/~erhic/electra/)
- Goal: NSAC NRL (2005-2006) input and CDO preparation
- Participation (In particular HERA community) very welcome on detector/IR design:
 - More information: (http://www.bnl.gov/eic/)

IR design parameters

Table 4.1: Magnet parameters for the electron triplets.						
	QE1	QE2	QE3			
length [m]	0.6	0.8	0.6			
gradient [T/m]	83.3	76.7	56.7			
radius [mm]	24	26	35			
bending angle left/right [mrad]	2.50/-2.74	5.30/-2.02	0.0/-4.19			
shift w.r.t. detector axis left/right [mm]	0/-10	0/-10	0/-10			
tilt w.r.t. detector axis left/right [mrad]	1.25/-1.37	3.90/-2.38	3.90/-4.48			
synchrotron radiation power left/right [W]	735/882	2475/360	0/2063			
synchr. rad. power on septum left/right [W]	466/360	0/360	0/0			
critical photon energy left/right [keV]	9.3/10.1	14.7/5.6	0/15.5			

Table 4.2. Parameter list of the hadron low- β septum quadrupoles									
	Q1	Q1B	Q1C	Q2	Q2B	Q2C	Q2D	Q2F	Q2G
length [m]	0.8	2.8	1.2	1.5	1.5	1.5	1.5	1.5	1.5
gradient [T/m]	58.3	41.7	33.3	20.2	17.0	16.2	16.2	16.2	17.0
pole tip radius [mm]	17.1	24.0	30.0	49.4	58.9	61.8	61.8	61.8	58.9
pole tip field [T]	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Backup slides

RHIC Ring

Court. T. Roser

e cooling

Intra-Beam Scattering:

The ions collide with each other, leading to accumulation of random energy (heat) derived from the guide fields and the beam's energy.

magnetic field

Intra Beam Scattering

Electron Cooling

oath taken by

BRAHMS

Electron Cooler

DIS2005, 04/30/2005 Madison, WI