Summary of the HFS Working Group

This talk: Part I: Experimental Aspects (PartII: Theory aspects – Pavel Nadolsky) Pavel Nadolsky Claudia Glasman Steve Maxfield

~40 talks covering wide range of Hadronic Final State physics Obviously impossible to do justice to them all Will try to provide snap-shot of the various analyses Apologies in advance for leaving out 'favourite' results Please look at the wealth of detail in the full presentations

Puzzling Pentaquarks

• New studies from H1, ZEUS, HERMES, BABAR and CLAS.

- Strange and Charm pentaquark at HERA
- HERMES θ^+ , θ^{++} and Ξ^{--}
- BABAR θ^+ , θ^{++} , Ξ^- and Ξ^0

CLAS θ⁺

Strange Pentaquark H1 and ZEUS

ZEUS ✓

...but is there really a contradiction?

 Observation of Θ⁺
 ZEUS Collaboration: S. Chekanev et al. Physics Letters B 591 (2004) 7-22
 Kinematics range

- $\begin{array}{l} Q^2 > 20 GeV^2 \\ \widetilde{P}_T(\Theta^+) > 0.5 GeV, \mid \eta(\Theta^+) \mid < 1.5 \end{array}$
- A signal with ~4.6 σ statistical significance was observed at

 $M = 1521.5 \pm 1.5(stat)^{+2.8}_{-1.7}(syst) MeV$

 Gaussian width 6.1±1.5 MeV (experimental resolution ~2 MeV)

no significant signal in the interesing mass range 1.52 to 1.54 GeV

DIS 2005 Stephen Maxfield Liverpool

4

Comparison with ZEUS:

low-momentum dE/dx selection $20 < Q^2 < 100 \text{ GeV}^2$ 0.1 < y < 0.6

M=1.52 GeV oU.L.~ 100 pb *

ZEUS observation: Q2>20 GeV2, 0.04 < y <0.95, p_T>0.5, |η|<1.5 σ(ep->e +X->eK⁰pX)=125 ± 27(stat) +36 -28 (syst.) pb (prel.)

 $\sigma_{U.L.} \sim 100 \text{ pb not in contradiction with ZEUS measured cross section}$

* at M=1.522 GeV assuming a resolution of 5 (8) MeV σ_{U.L.} = 89.6 (116.3) pb

Karin Daum /Yehuda Eisenburg

...but negative results (in different processes) from ALEPH, FOCUS, CDF, BELLE

...and ZEUS same process

HERMES pentaquark searches

Avetik Airapetian

Check θ^+ for

•Kinematic reflections, detector acceptance cuts. Is it a $\Sigma^{*+,}$ Still there with additional π ?

Θ^+ Isospin

 $\blacktriangleright \Theta^+ \rightarrow \rho K_S^0$

Conclusions

- ${\ensuremath{ \bullet}}$ Direct reconstruction of ${\ensuremath{ \Theta}}^+$ invariant mass
- ${\ensuremath{\bullet}}$ Confirmation of ${\ensuremath{\Theta}}^+$ (results carefully checked)
- No peak in $\Theta^{**} \rightarrow pK^*$:probably isoscalar
- Third π improves signal \rightarrow :production mechanism?
- Ξ^{--} is not seen $\rightarrow \sigma_{\Xi^{--}} < 2.1 nb(90\% C.L.)$

Searches for Pentaquarks at BaBar Eric Eckhart

Inclusive searches for θ^+ (in e⁺e⁻ and electro-production), Ξ^{--} , Ξ^0

x-y location of pKs vertices \Rightarrow electro-, hadro-production off detector material

- No enhancement near 1540 GeV/c²;
- Clear Λ_c⁺ →pK_s signal with 98,000 candidates;
- Mass resolution (HWHM) is 2 MeV/c² at 1540 MeV/c².
- There is copious production Λ^0 , Ξ^- , Ξ^{*0} , Ω^- , $\Xi_c^{\ 0}$, Λ_c^+ baryons at BaBar;
- There is no evidence for Θ(1540)⁺ → pK_s in e⁺e⁻ interactions, or electro- or hadro-production in the detector material;
- There is no evidence for Ξ₅(1860)⁻⁻ or Ξ₅(1860)⁰ states;
- Limits on ⊖(1540)⁺ and Ξ₅(1860)⁻ production are well below baryons of similar mass;
- There is no evidence for $\Theta^{*++} \rightarrow pK^+$ in $B^+ \rightarrow ppK^+$.

Conclusions:

Conclusions on Pentaquark results:

This slide deliberately left blank

• • • Perturbative QCD and Jets

• • • Precision Measurements of α_{S} Claudia Glasman

•Review of α_{S} determinations from H1 and ZEUS experiments.

•Evaluation of HERA averages of $\alpha_{\rm S}({\rm M_Z})$ and scale dependence of $\alpha_{\rm S}$.

Process	Coll.	Value	Stat.	Experim.	Theory	Total	cert.		
Dijet NC DIS	ZEUS	0.1166	0.0019	+0.0024 -0.0033	+0.0057 -0.0044	$+0.0065 \\ -0.0058$	++ incert)	Jet shapes in NC DIS ZEUS (Nucl Phys B 700 (2004) 3)
Inc. Jet NC DIS	ZEUS	0.1212	0.0017	+0.0023 -0.0031	$+0.0028 \\ -0.0027$	+0.0040 -0.0044		HHH.	Multi-jets in NC DIS ZEUS (DESY 05-019 - hep-ex/0502007)
Inc. Jet NC DIS	H1	0.1186	\rightarrow	$+0.0030 \\ -0.0030$	$+0.00\overline{51}$ $-0.00\overline{51}$	$+0.0059 \\ -0.0059$			ZEUS (Phys Lett B 560 (2003) 7)
3/2 Jet NC DIS	ZEUS	0.1179	0.0013	+0.0028 -0.0046	$+0.0064 \\ -0.0046$	$^{+0.0071}_{-0.0066}$		1	ZEUS (Eur Phys Jour C 31 (2003) 149) Subjet multiplicity in NC DIS
3/2 Jet NC DIS	H1	0.1175	0.0017	$+0.0050 \\ -0.0050$	$+0.0054 \\ -0.0068$	$+0.0076 \\ -0.0086$			ZEUS (Phys Lett B 558 (2003) 41) NLO QCD fit
Subjet NC DIS	ZEUS	0.1187	0.0017	$+0.0024 \\ -0.0009$	$+0.0093 \\ -0.0076$	$^{+0.0097}_{-0.0078}$			H1 (Eur Phys J C 21 (2001) 33) NLO QCD fit
Jet Shape NC DIS	ZEUS	0.1176	0.0009	$+0.0009 \\ -0.0026$	$^{+0.0091}_{-0.0072}$	$^{+0.0092}_{-0.0077}$		H H	ZEUS (DESY 05-050 - hep-ex/0503274) NLO QCD fit
Subjet CC DIS	ZEUS	0.1202	0.0052	$+0.0060 \\ -0.0019$	$+0.0065 \\ -0.0053$	$^{+0.0103}_{-0.0077}$			Inclusive jet cross sections in NC DIS H1 (Ever Phys. I.C. 19 (2001) 280)
NLO QCD Fit	ZEUS	0.1183	\rightarrow	+0.0028 -0.0028	$+0.0051 \\ -0.0051$	$+0.0058 \\ -0.0058$		Hell	Inclusive jet cross sections in NC DIS ZEUS (Phys Lett B 547 (2002) 164)
NLO QCD Fit	H1	0.1150	\rightarrow	$^{+0.0017}_{-0.0017}$	$^{+0.0051}_{-0.0050}$	$^{+0.0054}_{-0.0053}$		H <mark>H</mark> H.	Dijet cross sections in NC DIS ZEUS (Phys Lett B 507 (2001) 70)
Inc. Jet γp	ZEUS	0.1224	0.0001	$^{+0.0022}_{-0.0019}$	$+0.0054 \\ -0.0042$	$^{+0.0058}_{-0.0046}$	1		World average (S. Bethke, hep-ex/0407021)
experimental uncertainties: $\sim 3\%$							0.1	0.12	0.14
$\sim 8\%$ (internal structure of jets)									$\alpha_s(M_Z)$

Most precise determinations used in averages

•Averaging must take proper account of correlations in e.g

•Energy-scale uncertainties, PDFs, hadronisation corrections, terms beyond NLO

 $\rightarrow \overline{\alpha_s(M_Z)} = 0.1186 \pm 0.0011 \text{ (exp.)} \pm 0.0050 \text{ (th.)}$

experimental uncertainty: $\sim 0.9\%$ theoretical uncertainty: $\sim 4\%$

Combined running of α_{s} using correlation method for data at similar E_{T}

...Next steps will need NNLO

Inclusive jet and dijets from D0

Brian Davies

•Run II has ~0.7 fb⁻¹ (~half being analysed here)

•Increased beam energy \Rightarrow extended p_T reach promising sensitivity to gluon at high x

•New cone algorithm IR safe

•Dominant experimental systematic from jet energy scale (~5%) – still understanding new detector components

•Also looking at flavour tagging of jets with μ s (vertex tagging to come) and ϕ decorrelations

Jet measurements at CDF

Rick Field

CDF Inclusive b-jet cross-section

Use shape of secondary vertex mass as discriminator

• Use to make α_s determination

•Measure cross section ratio R_{3/2}

•Reduced experimental and theory uncertainties (e.g. μ_R dependence reduced to $\sim 5\%$)

Inclusive Jet Cross-Sections in Neutral Current DIS Events Using the Breit Frame Jeff Standage

New measurement with 1999/2000 ZEUS data

- •Data points consistent with NLO prediction within the uncertainties.
- •This measurement is directly sensitive to value of $\alpha_s(M_z)$ and the scale dependence of α_s .
- •Consistent with NLO predicted ~10% increase in cross-section

Colour dynamics in photoproduction of jets (ZEUS) Juan Terron

Photoproduction of Three-Jet Events

• **Direct processes** provide a clean way to study the effects of the different color configurations

Use angular variables to distinguish the different processes

• The predicted cross section at $\mathcal{O}(lpha lpha_s^2)$ can be written as

$$\sigma_{ep \to 3 \text{jets}} = C_F^2 \cdot \sigma_A + C_F C_A \cdot \sigma_B + C_F T_F \cdot \sigma_C + T_F C_A \cdot \sigma_D$$

Neutral and Charged Kaon Bose-Einstein Correlations in DIS

Azimuthal Asymmetries in DIS (ZEUS) Artur Ukleja

(better pQCD behaviour)

-0.1

-3

-2

0

April 2005

ղ**нсм**

-1

Inclusive Forward Jet production in DIS (ZEUS)

Nicolai Vlasov

- Average hadronisation correction obtained with LEPTO and ARIADNE
- Proton PDF CTEQ5D
- NLO predictions lower than data but within theoretical uncertainties (except very low x_{Bi})
- Theory has too large uncertainty

 No disagreement with NLO DGLAP has been observed for forward jets

Different way of estimating scale uncertainty?

DIS 2005 Stephen Maxfield Liverpool

30

Charged multiplicity distributions (ZEUS)

Michele Rosin

Breit Frame analysis of multiplicities

Careful look at: current region in B.F. \equiv one e⁺e⁻ hemisphere

Fragmentation Process in HERMES

•Flavour separated multiplicity distributions – RICH

Test factorisation and validity of e⁺e⁻ FFs down to low Q² (2.5GeV²)
Must cope with low HERMES acceptance

Systematics from RICH

April 2005

Polarization and Asymmetries in Neutral Strange ParticleProduction (ZEUS)Andrew Cottrell

Investigate Λ , $\overline{\Lambda}$ and K_s^0

•Strange quark polarisation (origin of s)

- •Baryon/meson ratio
- •Baryon number (how transferred?)

Conclusions:

- •Transverse Λ pol consistent with 0
- •Longitudinal also sensitivity for HERAII
- •No Λ - Λ bar asymmetry starts to limit baryon number transport models
- •Baryon/Meson ratio between e⁺e⁻ and Heavy Ion - strong decrease with x

c.f. Ariadne

π^0 , η and direct γ production in Au+Au and p+p collisions

PHENIX

Au-Au with p+p Nuclear modification factor

Terry Awes

Partons from hard scattering exit through dense strongly interacting medium \Rightarrow "jet quenching"

 π^0 and charged hadrons exhibit:

Strong suppression \Rightarrow high gluon densities and energy densities

Suppression increasing with overlap (so with increasing density and pathlength

But must distinguish initial state effects – modifications to PDFs (shadowing, saturation etc)

From final state effects of QGP (+etc)

So look at direct $\boldsymbol{\gamma}$ production – once produced escape unscathed

No suppression seen!

Strong confirmation hadron suppression due to QGP rather than PDF modification

Jet properties from di-hadron correlations in pp and dAu PHENIX Jiangyong Jia

•Access properties of dijet system through 2-particle correlation in $\Delta \varphi$

Relatively insensitive to multiplicity and limited PHENIX acceptance

Look at Jet shape, yield, underlying event.

e.g. Jet yield

$$\Rightarrow$$

...showing pp, dAu agree within errors.

Conclusion

- Experimental studies of the hadronic final state alive and active
- Developments in "traditional" jet cross-section and QCD studies.
- New and exciting results from JLAB and RHIC
- Still huge amount to learn before (and after) LHC turns on

Many thanks to all the HFS speakers!