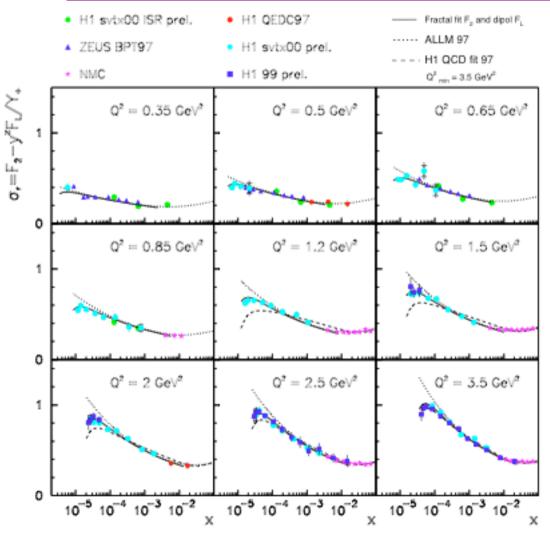
Structure Functions & low-x group: low-x summary

Jo Cole, Un-Ki Yang, Jianwei Qiu University of Bristol 30th April 2005

- Overview of the group presentations
- Summary of the low-x presentations
- © Conclusions


Overview of group presentations

- Structure function measurements at low x
 - \P F₂ & F₁ measurements at low \P (H1)
 - Averaging of HERA F₂ data
- Structure function measurements at high x
- Structure functions (theory)
 - NNLO analysis of unpolarised DIS structure functions
 - Testing NLO BFKL resummation
- Q Low-x physics at RHIC
- @ Low-x & saturation (theory)
- High-x theory
 - Pactorisation & event generators
- Joint session with EWK group
- @ Global PDF analyses
- Future of PDFs
 - Impact of HERA-II data on the proton PDFs

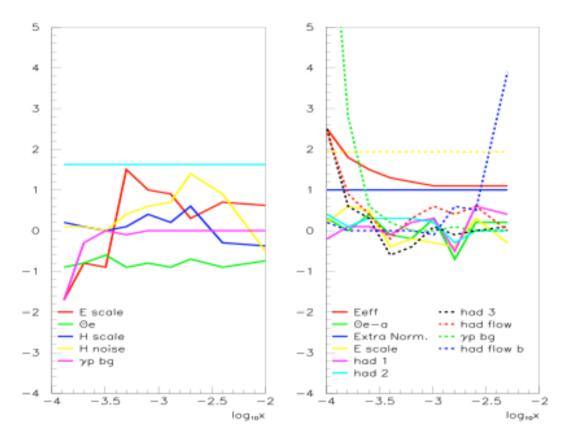
Structure Functions at low x

- F₂ measurements using QED Comptons (H1/Lobodzinska)
- Measurements of F_2 & F_L at low Q^2 (H1/Petrukhin)
- Averaging of ZEUS & H1 structure function data (Glazov)

F₂ & F_L measurements at low Q² (H1)

(E. Lobodzinska/A. Petrukhin)

- Precision low Q² F₂ measurements
- Number of different methods
- Extension into the higher x region overlap with fixed target data
- Close to completing HERA-I structure function programme


30th April 2005

DIS05: low-x summary

4

Averaging of H1 & ZEUS data

(S. Glazov)



- Q Surprising (?) result: reduction of systematic uncertainties after averaging
- © Experiments constraining each other ...

Sensitivity to syst. errors for $Q^2 = 6.5 \text{ GeV}^2$

Averaging of H1 & ZEUS data

(S. Glazov)

Low x theory

- NNLO scheme invariant evolution of unpolarised DIS structure functions (Guffanti)
- Tests of NLO BFKL resummation (Royon)
- Factorisation & event generators (Zu)

NNLO scheme invariant evolution of unpolarised DIS structure functions

(A. Guffanti)

- @ Aim:
 - $\alpha_{\rm S}$ with theoretical uncertainty ~ 1% to match experimental uncertainty
 - PDFs with fully correlated errors
- Use factorisation scheme-invariant evolution
 - Evolution equations with physical anomalous dimensions
- ${f @}$ Perform one-dimensional fit to determine $lpha_{ extsf{S}}$
- Initial results on F₂
- @ Work still ongoing (inclusion of heavy flavours, fit to data, one parameter fit to $\Lambda_{\rm QCD}$)

NNLO scheme invariant evolution of unpolarised DIS structure functions

 F_2 , $\partial F_2/\partial t$ - NNLO

(A. Guffanti)

Next-to-next-to-Leading Order:

$$\begin{split} K_{22}^{N(2)} &= & K_{2d}^{N(2)} = 0 \\ K_{d2}^{N(2)} &= & \frac{1}{4} \left(\gamma_{qq}^{N(2)} \gamma_{gg}^{N(0)} + \gamma_{qq}^{N(0)} \gamma_{gg}^{N(2)} - \gamma_{qg}^{N(2)} \gamma_{gq}^{N(0)} - \gamma_{qg}^{N(0)} \gamma_{gg}^{N(2)} + \gamma_{qq}^{N(1)} \gamma_{gg}^{N(1)} - \gamma_{qg}^{N(1)} \gamma_{gq}^{N(1)} \right) \\ &+ \frac{\beta_0}{2} \left[C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(1)} + \gamma_{gg}^{N(1)} \right) - \left(C_{2,q}^{N(1)} \right)^2 \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) - 3 C_{2,s}^{N(1)} \gamma_{sg}^{N(1)} \right] \\ &- \beta_0 \left[\gamma_{qq}^{N(2)} + 2 \gamma_{gq}^{N(0)} \left(C_{2,g}^{N(2)} - C_{2,g}^{N(1)} C_{2,q}^{N(1)} \right) - C_{2,q}^{N(2)} \left(\gamma_{qq}^{N(0)} + \gamma_{g}^{1} \right) \right. \\ &+ \beta_0^2 \left[3 \left(C_{2,q}^{N(1)} \right)^2 - 4 C_{2,q}^{N(2)} \right] + \frac{\beta_1}{2} \left[\gamma_{qq}^{N(1)} - C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) \right. \\ &+ \left. \left(C_{2,g}^{N(1)} \right)^2 - 4 C_{2,q}^{N(2)} \right] + \frac{\beta_1}{2} \left[\gamma_{qq}^{N(1)} - C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) \right. \\ &+ \left. \left(C_{2,g}^{N(1)} \right) \right] + \frac{\beta_1}{2\beta_0} \left(\gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} + \gamma_{qg}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{qg}^{N(0)} \gamma_{gg}^{N(1)} \right) \right. \\ &+ \frac{1}{(\gamma_{qg}^{N(0)})} \left(\gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{qg}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{qg}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{qg}^{N(0)} \gamma_{gg}^{N(0)} \right) \right. \\ &+ \frac{1}{\gamma_{qg}^{N(0)}} \left[\left(C_{2,g}^{N(1)} \gamma_{qq}^{N(0)} \left(C_{2,g}^{N(1)} \left(\gamma_{qq}^{N(0)} - \gamma_{gg}^{N(0)} \right) - \gamma_{qg}^{N(1)} \right) \right] + 2 \beta_0^3 C_{2,q}^{N(1)} \right. \\ &+ \left. \left(C_{2,g}^{N(1)} \gamma_{qq}^{N(0)} \left(C_{2,g}^{N(2)} - C_{2,g}^{N(1)} C_{2,q}^{N(0)} \right) - C_{2,g}^{N(1)} C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(0)} - \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \right) \right. \\ &+ \left. \left(C_{2,g}^{N(1)} \gamma_{qq}^{N(1)} + \left(C_{2,g}^{N(1)} \right)^2 \gamma_{gq}^{N(0)} \right] \right] \\ &+ \left. \left(C_{2,g}^{N(1)} \gamma_{qq}^{N(1)} + \left(C_{2,g}^{N(1)} \right)^2 \gamma_{gq}^{N(0)} \right) \right] \\ &+ \left. \left(C_{2,g}^{N(1)} \gamma_{qq}^{N(1)} + \left(C_{2,g}^{N(1)} \right)^2 \gamma_{gq}^{N(0)} \right] \right] \\ &+ \left. \left(C_{2,g}^{N(1)} \gamma_{qq}^{N(1)} + \left(C_{2,g}^{N(1)} \right)^2 \gamma_{gq}^{N(0)} \right] \right] \\ &+ \left. \left(C_{2,g}^{N(1)} \gamma_{qq}^{N(1)} + \left(C_{2,g}^{N(1)} \right)^2 \gamma_{gq}^{N(0)} \right] \right] \\ &+ \left. \left(C_{2,g}^{N(1)} \gamma_{qq}^{N(1)} + \left(C_{2,g}^{N(1)} \gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) \right] \right] \\ &+ \left. \left(C_{2,g}^{N(1)} \gamma$$

A. Guffanti 12

$$\begin{split} K_{2d}^{N(2)} &= 0 \\ \frac{1}{4} \left(\gamma_{qq}^{N(2)} \gamma_{g}^{N(0)} + \gamma_{qq}^{N(0)} \gamma_{gq}^{N(2)} - \gamma_{qg}^{N(2)} \gamma_{gq}^{N(0)} - \gamma_{qg}^{N(1)} \gamma_{gq}^{N(1)} - \gamma_{qg}^{N(1)} \gamma_{gq}^{N(1)} \right) \\ + \frac{1}{2} \left[C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(1)} + \gamma_{gg}^{N(1)} \right) - \left(C_{2,q}^{N(1)} \right)^2 \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) - 3C_{2,q}^{N(1)} \gamma_{gg}^{N(1)} \right] \\ - \beta_0 \left[\gamma_{qq}^{N(2)} + 2\gamma_{gq}^{N(0)} \left(C_{2,g}^{N(2)} - C_{2,g}^{N(1)} C_{2,q}^{N(1)} \right) - C_{2,q}^{N(2)} \left(\gamma_{qq}^{N(0)} + \gamma_{g}^{1} \right) \right] \\ + \beta_0^2 \left[3 \left(C_{2,q}^{N(1)} \right)^2 - 4C_{2,q}^{N(2)} \right] + \frac{1}{2} \left[\gamma_{qq}^{N(1)} - C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(1)} + \gamma_{gg}^{N(0)} \right) \right] \\ + \beta_0^2 \left[3 \left(C_{2,q}^{N(1)} \right)^2 - 4C_{2,q}^{N(2)} \right] + \frac{1}{2} \left[\gamma_{qq}^{N(1)} - C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) \right] \\ + \beta_0^2 \left[3 \left(C_{2,q}^{N(1)} \right)^2 - 4C_{2,q}^{N(2)} \right] + \frac{1}{2} \left[\gamma_{qq}^{N(1)} - C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) \right] \\ + \beta_0^2 \left[3 \left(C_{2,q}^{N(1)} \right)^2 - 4C_{2,q}^{N(2)} \right] + \frac{1}{2} \left[\gamma_{qq}^{N(1)} - C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) \right] \\ + \beta_0^2 \left[3 \left(C_{2,q}^{N(1)} \right)^2 - 4C_{2,q}^{N(0)} \right] + \frac{1}{2} \left[\gamma_{qq}^{N(1)} - C_{2,q}^{N(1)} \left(\gamma_{qq}^{N(0)} + \gamma_{gg}^{N(0)} \right) \right] \\ + \beta_0^2 \left[3 \left(\gamma_{qq}^{N(1)} \gamma_{gg}^{N(0)} + \gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(1)} \right) \right] \\ + \frac{1}{2} \frac{3}{2} \frac{1}{6} \left[\gamma_{qq}^{N(1)} \gamma_{gg}^{N(0)} + \gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} \right] \\ + \frac{1}{2} \left[\gamma_{qq}^{N(1)} \gamma_{gg}^{N(0)} + \gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} \right] \\ + \frac{1}{2} \left[\gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} \right] \\ + \frac{1}{2} \left[\gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} + \gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} + \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} \right] \\ + \frac{1}{2} \left[\gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} + \gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} \right] \\ + \frac{1}{2} \left[\gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} + \gamma_{qq}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} - \gamma_{gg}^{N(0)} \gamma_{gg}^{N(0)} \right] \\$$

A. Guffanti

13

DIS 2005 - April 28th 2005

Tests of NLO BFKL resummation

(C. Royon)

- © LO BFKL very successful for F_2 (proton), but with effective $\alpha_{\rm S} \sim 0.1$ (should be ~ 0.2 for HERA kinematics)
- NLO BFKL theoretical problems, expected NLO improvement fails
 - Solution: include resummation
- Test NLO BFKL including resummation using the same tests used for LO BFKL ("saddle point approximation")
- Tests not completely successful need to identify reasons why

Factorisation & Event Generators

 $(X. Z \cup)$

- Q Aiming to develop a nonleading order event generator for DIS - need to make the following requirements:
 - factorisation of differential cross sections
 - Exact parton kinematics
- In order to do this, use unintegrated parton correlation functions
 - © Cannot integrate over final state
 - Replaces parton shower in LO MC generators
- @ Basic rules established, but need to extend them to cover QCD fully

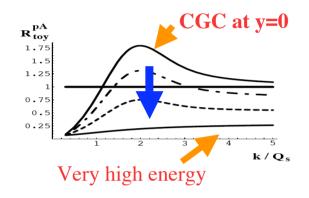
Low-x physics from RHIC

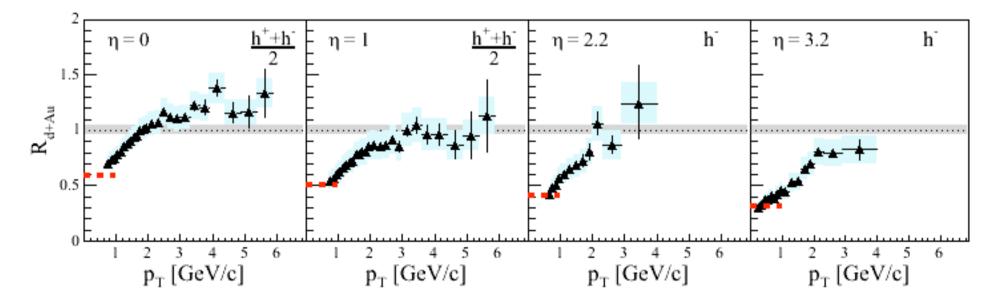
- Rapidity dependence of high P_t suppression (BRAHMS/Videbaek)
- Nuclear modification factors for hadrons at forward & backward rapidities in deuteron-gold collisions at √s = 200 GeV (PHENIX/Zhang)
- Neutral Pion suppression at forward rapidities in d+Au collisions at STAR (STAR/Rakness)
- Nuclear modification in d+Au collisions by colour glass condensate (Kovchegov)
- Forward production in d+Au collisions by parton recombinations (Fries)

30th April 2005 DIS05: low-x summary

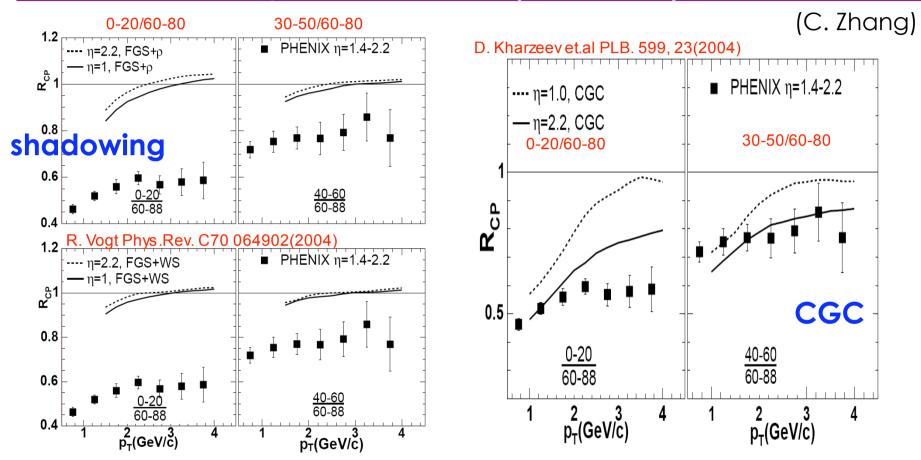
12

Low x physics in nuclei

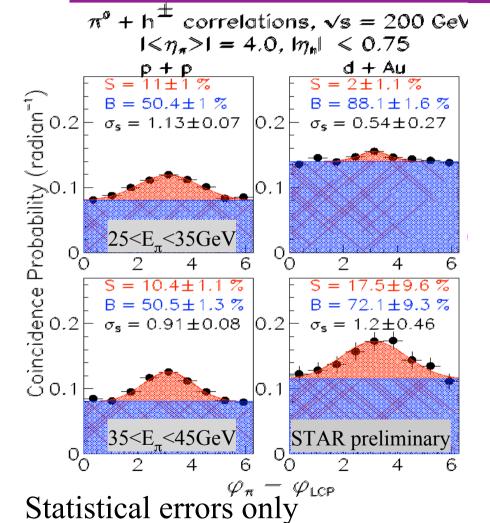

- Gluon density in a nucleus is enhanced by A^{1/3} at a given impact parameter
- Nucleus is a better place to observe and study the phenomena of gluon recombination and gluon saturation
- Gluon recombination and coherent multiparton interactions
 - Suppression of gluon
 - Reduction of hadronic cross sections
- @ Gluon saturation
 - © Colour Glass Condensate
 - (a new state of partons?)
 - Effective field theory approach


Rapidity dependence of high Pt suppression (BRAHMS)

- Oetermine from charged hadron multiplicity
- "Cronin effect" enhancement at η ≈ 0
- © Clear suppression up to $\eta = 3.2$


$$R_{dAu} = \frac{d^2N/dp_T d\eta(d+Au)}{N_{Coll}d^2N/dp_T d\eta(p+p)}$$

(F. Videbaek)


Measuring nuclear modification on hadron production (PHENIX)

R_{CP}: ratio of charged hadron multiplicity for central and peripheral collisions

15

Neutral pion suppression at forward rapidities (STAR)

(G. Rakness)

- Observe suppression compared to p-p
 - S = probability of correlated event
 - © B = probability of uncorrelated event
- © Consistent with shadowing/CGC predictions
- More data needed!

30th April 2005

DIS05: low-x summary

Nuclear modification in d+Au ...

- ... by colour glass condensate (Y. Kovchegov)
 - Model used by PHENIX for R_{CP}
 - Other predictions also made for azimuthal correlations
 - Evolution between jets makes correlations disappear in certain p_T region
 - Supported by measurements from STAR
- ... by parton recombination (R. Fries)
 - Assume in dense parton systems that quarks recombine to form hadrons important for intermediate p_T region
 - @ Recombination in d+Au explains $R_{dAu}(p) > R_{dAu}(\pi)$ at midrapidity (as observed by STAR)

30th April 2005

Saturation

- Saturation, travelling waves & the BK equation at LL & NLL (Enberg)
- Nonlinear evolution equations in QCD (Stasto)
- Dense-Dilute Duality in high energy evolution (Kovner)
- Chaos in colour glass condensate (Tuchin)
- Gluon distributions & fits using dipole cross sections (Thorne)
- Summary of presentations from Jianwei ...

30th April 2005 DIS05: low-x summary

18

BK equation and traveling waves

(R. Enberg)

- $\partial_Y \mathcal{N}(k,Y) = \bar{\alpha} \left[\chi(-\partial_L) \mathcal{N}(k,Y) \mathcal{N}^2(k,Y) \right]$ is a quite complicated integro-differential equation.
- Munier & Peschanski realized that it can be approximated by expanding the kernel:

$$\chi(\gamma) \simeq \chi(\gamma_c) + \chi'(\gamma_c)(\gamma - \gamma_c) + \frac{1}{2}\chi''(\gamma_c)(\gamma - \gamma_c)^2$$

which brings the BK equation into the form of the Fisher–Kolmogorov–Petrovsky–Piscounov (FKPP) equation

$$\partial_t u = \partial_x^2 u + u - u^2$$

$$(t \sim Y \text{ and } x \sim L = \log k^2)$$

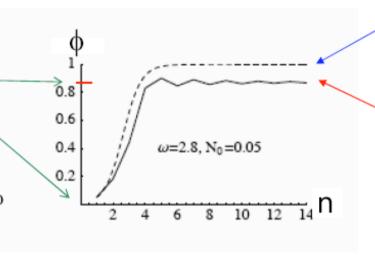
FKPP equation has traveling wave solutions

Chaos in the Color Glass Condensate Discretization of BK equation

(Kharzeev, K.T., 05)

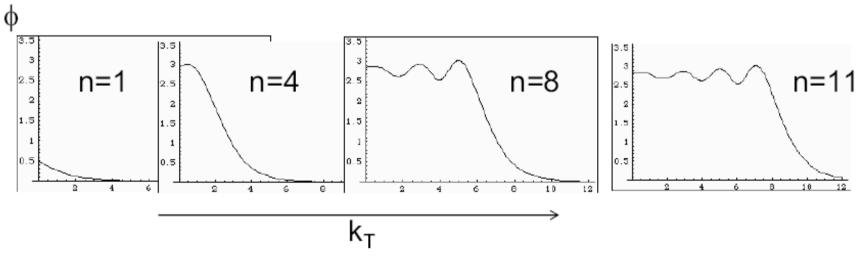
- Let's impose the boundary condition by putting a system in a box of size L~Λ⁻¹
- We can think of evolution as a discrete process of gluon emission when parameter $n=\alpha_s \ln(1/x)$ changes by unity.
- Evolution equation can be written as

$$\varphi_{n+1}(k_{\perp}) = (\hat{\chi} + 1)\varphi_n(k_{\perp}) - \varphi_n^2(k_{\perp})$$


- Diffusion approximation: $\chi(\gamma) \approx 4 \ln 2 + 14 \zeta(3) (\gamma 1/2)^2 + ...$
- Let's keep only the first term $\chi(\gamma) = \chi(1/2) \equiv \omega 1$.

$1<\omega<3$

Stable fixed point:


Unstable fixed point:

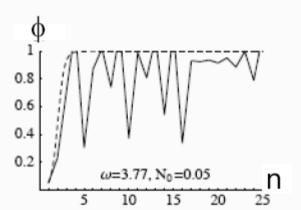
$$\phi_{n+1} = \phi_n \implies \phi_{n,fixed} = \begin{cases} (\omega - 1)/\omega \\ 0 \end{cases}$$

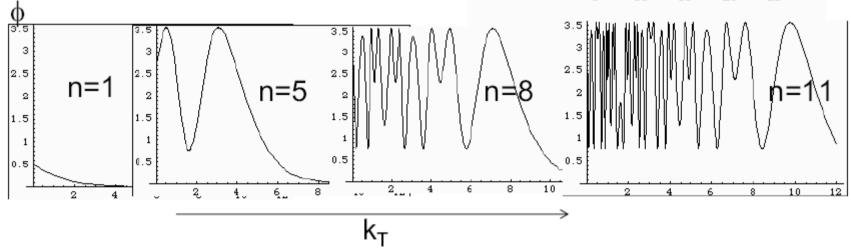
continuous

discrete

30th April 2005

DIS05: low-x summary


Kirill Tuchin


Onset of chaos

 $\omega > \omega_F = 3.569$ (Feigenbaum's number)

In pertubative QCD:

$$\omega > \omega_{min} = 1 + 4 \times ln2 = 3.77 > \omega_{F}$$

30th April 2005

DIS05: low-x summary

Kirill Tuchin

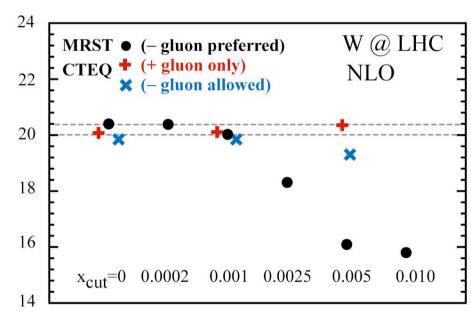
Effective field theory approach

Effective action for scattering off color glass condensate (Anna Stasto – BNL)

Quantum evolution of scattering amplitude for high energy collisions between a dilute and a dense system

(Alex Kovner – Univ. of Connecticut)

Duality between scattering amplitude between dilute-dense and dense-dilute collisions at high energy (Alex Kovner – Univ. of Connecticut)

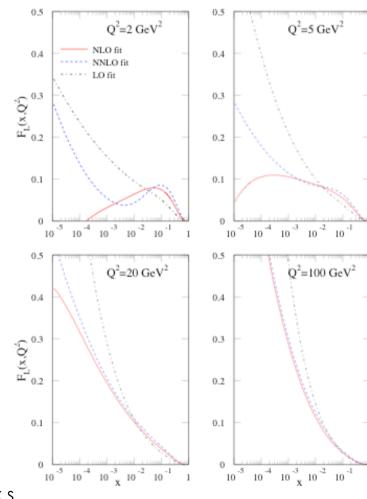

Parton distribution functions

- Parton uncertainties & the stability of NLO global analysis (CTEQ/Stump)
- Recent progress in parton distributions & implications for LHC physics (MRST/Thorne)
- Proton PDFs using structure function & jet data from ZEUS (ZEUS/Terron)
- The Neural Network approach to PDF fitting (Rojo)
- Impact of future HERA data on the ZEUS PDF fit (Gwenlan-Barr)

Uncertainties & stability of PDFs

- © Considered compatibility of datasets
- Are the final results of the global PDF fits stable ?
 - © Considered recent analysis by MRST group
 - © Studied stability with respect to x_{cut} , Q_{cut}^2

(D. Stump)

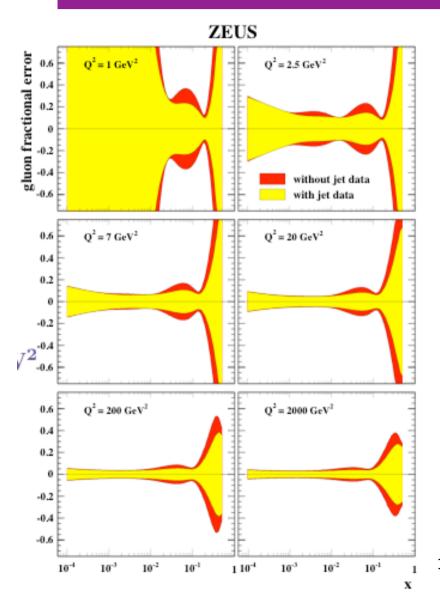

- © CTEQ conclude that fits are stable
- MRST conclude: uncertainties increase significantly with tight x requirement; in any case NNLO is much more stable

 5_{W} .B_{lv} [nb]

Recent progress in PDFs - MRST

(R. Thorne)

- © Discussion of impact on LHC physics: W & Z cross sections; also jet cross sections
- © General move towards NNLO PDFs expect this to become the standard
 - @ But note the impact on certain distributions:


30th April 2005

DIS05: low-x s

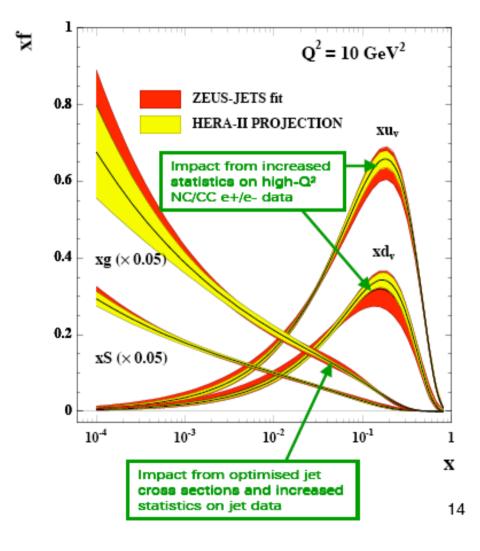
Recent progress in PDFs

- MRST also considered QED effects would expect to be negligible, which they are ...
- However, leads to small isospin violation
 - Results in improvement of prediction for prompt photon production at HERA
- Neural network approach to PDF fitting (NNPDF/J. Rojo)
 - Q Alternative approach no bias from assumed functional form
 - @ Better estimation of PDF uncertainties
 - Structure functions determined; determination of PDFs underway

PDFs from ZEUS data

(J. Terron)

- Addition of NC DIS jet data and direct-enriched dijet photoproduction data to ZEUS PDF fit
- Improves gluon density uncertainties at moderate x
- Also allows precise α_S determination from ZEUS data alone:


$$\alpha_{\rm S}$$
 = 0.1183 ± 0.0058

© Comparison to Bethke 2004:

$$\alpha_{\rm S}$$
 = 0.1182 ± 0.0027

Impact of future HERA data on ZEUS PDFs

- © Consider impact of expected HERA-II running scenario on ZEUS PDFs
- Significant improvement in valence quark distributions
- Some improvements observed in gluon & sea distributions as well
- Also considered inclusion of precision HERA F_L results (low-x, low Q² gluon)
- e-D HERA running (sea quark asymmetries)

Low-x summary

- Lots of progress in low-x measurements & theory
- HERA-I structure function programme (almost) complete
- Searches for saturation effects at RHIC
- Developments in the theoretical description of saturation
 the colour glass condensate
- Studies of data compatibility & PDF stability from PDF fitting collaborations
- First study of the impact of future HERA-II data on PDFs

And finally ...

Thank you to the organisers, speakers & session chairs for a very interesting and profitable meeting!