Deeply Inelastic Scattering: Achievements and Needs

Johannes Blümlein
DESY

Deeply Inelastic Scattering: Achievements and Needs

Johannes Blümlein
DESY

e DIS: its contribution to the Standard Model

Deeply Inelastic Scattering: Achievements and Needs

Johannes Blümlein
 DESY

- DIS: its contribution to the Standard Model
e What do we know?

Deeply Inelastic Scattering: Achievements and Needs

Johannes Blümlein
 DESY

- DIS: its contribution to the Standard Model
e What do we know?
e What would we like to know?

1. DIS: its contribution to the Standard Model

An American Success Story:
 The Discovery of Scaling

FIG. 13. An early observation of scaling: νW_{2} for the proton as a function of q^{2} for $W>2 \mathrm{GeV}$, at $\omega=4$.
precise measurements in a new kinematic region confirm a theoretical prediction

scaling:

$$
\lim _{Q^{2}, \nu \rightarrow \infty, x=\text { fixed }} F_{i}\left(\nu, Q^{2}\right)=F_{i}(x)
$$

and find the constituents of hadrons, the partons.

$$
W_{i}\left(x, Q^{2}\right)=\sum_{i} d x_{i} \int_{0}^{1} e_{i}^{2} f\left(x_{i}\right) \delta\left(\frac{q \cdot p_{i}}{M^{2}}-\frac{Q^{2}}{M^{2}}\right)
$$

\Longrightarrow The measurement of F_{L} was instrumental to rule out vector-meson dominance models etc.

Partons were soon identified with quarks (and later also gluons) By this, quarks left their status as "pure mathematical objects".

- The GWS Standard Model could be completed:
- hadrons could be treated at the elementary level of their constituents
- anomaly free theory : $S U_{3 c} \times S U_{2 L} \times U_{1 Y}$
- asymptotic freedom : \rightarrow possibility of gauge coupling unification
- electroweak couplings in neutrino-quark scattering
- Factorization and Perturbation Theory at Short Distances
- Clear theoretical predictions for hard processes
- Inevitably necessary for:
- top quark discovery
- future Higgs particle discovery

DIS: Microscopy of the Nucleon

- determination of all quark densities and the gluon distribution
- determination of all polarized parton densities

DIS: Microscopy of the Nucleon

- determination of all quark densities and the gluon distribution
- determination of all polarized parton densities

DIS: Fundamental Tests of QCD

- precision measurement of $\Lambda_{Q C D}$ and $\alpha_{s}\left(M_{Z}^{2}\right)$
- Thorough verification of the prediction of the light cone expansion: to higher twist
- Test of linear and non-linear resummations

DIS: Microscopy of the Nucleon

- determination of all quark densities and the gluon distribution
- determination of all polarized parton densities

DIS: Fundamental Tests of QCD

- precision measurement of $\Lambda_{Q C D}$ and $\alpha_{s}\left(M_{Z}^{2}\right)$
- Thorough verification of the prediction of the light cone expansion: to higher twist
- Test of linear and non-linear resummations

Challenges for Theory: perturbative and non-perturbative

- higher order precision calculations and data analysis
- Lattice gauge theory results for hadronic matrix elements

2. The Achievements : What do we know?

DIS range

Nucleon structure:

$$
\begin{aligned}
& 10^{-5}<x<0.9 \\
& 1<Q^{2}<50.000 \mathrm{GeV}^{2}
\end{aligned}
$$

ZEUS

Asymptotic Freedom:

Nobel prize 2004

Parton Distributions

H 1

Slope of F_{2} at low x

Very likely, that the $\overline{\mathrm{MS}}$-gluon is remains positive!

3 Loop Splitting Functions

Moch, Vermasern, Vogt, 2004

Moments: 3 Loop Coefficient Functions

Example: J.B., Vermaseren, 2004

$$
\begin{aligned}
& C_{2}^{\mathrm{NS}, 16}\left(a_{s}\right)=\frac{4047739719}{190590400} C_{F} a_{S} \\
& +\left[\left(\frac{44426674163044428879366970127}{321931846921747956461568000} \frac{24439538}{255255} \zeta_{3}\right) C_{F}{ }^{2}\right. \\
& +\left(\frac{17918308408498294222783087}{59422705873182812160000}-\frac{113298677}{1021020} \zeta_{3}\right) C_{F} C_{A} \\
& \left.-\frac{143568372761907472111177}{2758911344112059136000} C_{F} N_{F}\right] a_{S}{ }^{2} \\
& +\left[\left(\frac{59290512768143}{3127445521200} \zeta_{4}-\frac{27643576}{21879} \zeta_{5}\right.\right. \\
& +\quad 3036813397599509725084677293842505976559161689 \\
& +\quad 8034458016040775933421647863403347968000000 \\
& \left.+\frac{1494341926940450865387403}{595674040206012768000} \zeta_{3}\right) C_{F}{ }^{3} \\
& +\left(\frac{59290512768143}{6254891042400} \zeta_{4}+\frac{262865377883475726558800935515033190333}{56646805852503848671021043712000000}\right. \\
& \left.+\frac{47187263}{51051} \zeta_{5}-\frac{15355050469171482313}{4991403051835200} \zeta_{3}\right) C_{F} C_{A}^{2} \\
& +\left(\frac{7227384935999670312318789884999}{76056398835262954714045440000}+\frac{64419601}{20675655} \zeta_{3}\right) C_{F} N_{F}{ }^{2} \\
& +\quad\left(\frac{7750026627118768752845091760890051465242741}{1652500620329242273431025887166464000000}\right. \\
& -\frac{2849482004138921491531}{6741167121672984000} \zeta_{3}+\frac{983963}{21879} \zeta_{5} \\
& \left.-\frac{59290512768143}{2084963680800} \zeta_{4}\right) C_{F}{ }^{2} C_{A}+\left(-\frac{552298563960959}{4021001384400} \zeta_{3}\right. \\
& \left.-\frac{4073207241348493196152222079933557529}{3529777469944553728278848870400000}+\frac{64419601}{1531530} \zeta_{4}\right) C_{F}{ }^{2} N_{F} \\
& +\quad\left(\frac{598788865585667}{1850495446800} \zeta_{3}-\frac{64419601}{1531530} \zeta_{4}\right. \\
& \left.\left.-\frac{582811634921542995647179358698536547}{404620041803598919078721740800000}\right) C_{F} C_{A} N_{F}\right] a_{s}{ }^{3}
\end{aligned}
$$

3 Loop Coefficient Functions

Moch, Vermasern, Vogt, 2004/05

Mathematical structure of HO QCD

Massless QCD, single-scale quantities :
can be described by a very small set of basic functions
Crucial : Mellin space representation.
J.B., 2000,2005; J.B., V. Ravindran, 2004, J.B., S. Moch, 2004/05

Precise numerical representations derived.

Weight	Sums	a-basic	Sums $\neg-1$	a-basic	str. Rel.	Fraction
1	2	2	1	0	0	0.0
2	6	3	3	0	0	0.0
3	18	8	7	2	2	0.1111
4	54	18	17	5	3	0.0555
5	162	48	41	14	8	0.0494
6	486	116	99	28	$?$	<0.0576
	728	195	168	49	<41	<0.0563

Only 14 functions and their derivatives span the QCD single scale quantities to 3 Loops.

Valence Distributions

Valence Distributions

Valence Distributions: higher twist

- agreement between p and d analysis
- LGT determination of interes \dagger

Flavor distributions: light quarks

More work needed.
HERMES probably could measure $s\left(x, Q^{2}\right)$ in an independent way.

Charm

Gluon Density

More work needed; MS- vs scheme-invariant evolution.
$F_{L}\left(x, Q^{2}\right)$ could be decisive.

Polarized Parton Densities

Polarized Gluon Density

J.B., H. Böttcher, 2002

AAC
\Longrightarrow Currently slight move towards lower values.

Moments of PDF's: PT + data

f	n	This Fit	MRST04	A02		Moment	BB, NLO
u_{v}	2	0.288 ± 0.003	0.285	0.304	Δu_{v}	0	0.926
	3	0.084 ± 0.001	0.082	0.087		1	0.163 ± 0.014
	4	0.0319 ± 0.0004	0.032	0.033		2	0.055 ± 0.006
d_{v}	2	0.113 ± 0.004	0.115	0.120	Δd_{v}	0	-0.341
	3	0.026 ± 0.001	0.028	0.028		1	-0.047 ± 0.021
	4	0.0078 ± 0.0004	0.009	0.010		2	-0.015 ± 0.009
$u_{v}-d_{v}$	2	0.175 ± 0.004	0.171	0.184	$\Delta u_{v}-\Delta d_{v}$	0	1.267
	3	0.058 ± 0.001	0.055	0.059		1	0.210 ± 0.025
	4	0.0241 ± 0.0005	0.022	0.024		2	0.070 ± 0.011

Lattice Results : developping; different fermion-types studied. Low values of m_{π} crucial; values approach 270 MeV now.

$\Lambda_{Q C D}$ and $\alpha_{s}\left(M_{Z}^{2}\right)$

$$
\frac{\delta \alpha_{\mathrm{em}}(0)}{\alpha_{\mathrm{em}}(0)} \sim 3 \cdot 10^{-11} \quad \frac{\delta \alpha_{\text {weak }}}{\alpha_{\text {weak }}} \sim 7 \cdot 10^{-4} \quad \frac{\delta \alpha_{s}\left(M_{Z}^{2}\right)}{\alpha_{s}\left(M_{Z}^{2}\right)}>2 \cdot 10^{-2}
$$

P. Zerwas, 2004

$\alpha_{s}\left(M_{Z}^{2}\right)$

NLO	$\alpha_{s}\left(M_{Z}^{2}\right)$	expt	theory	Ref.	NNLO	$\alpha_{s}\left(M_{Z}^{2}\right)$	expt	theory	Ref.
CTEQ6	0.1165	± 0.0065		[1]	MRST03	0.1153	± 0.0020	± 0.0030	[2]
MRST03	0.1165	± 0.0020	± 0.0030	[2]	A02	0.1143	± 0.0014	± 0.0009	[3]
A02	0.1171	± 0.0015	± 0.0033	[3]	SY01(ep)	0.1166	± 0.0013		[8]
ZEUS	0.1166	± 0.0049		[4]	SYO1($\nu \mathrm{N}$)	0.1153	± 0.0063		[8]
H1	0.1150	+0.0017	+0.0050	[5]	BBG	0.1139	+0.0026/-0.0028		[9]
			± 0.0050		NNLO				
BCDMS	0.110	± 0.006		[6]					
BB (pol)	0.113	± 0.004	$\begin{aligned} & +0.009 \\ & +0.006 \end{aligned}$	[7]					

BBG: $N_{f}=4$: non-singlet data-analysis at $O\left(\alpha_{s}^{3}\right): \Lambda=233 \pm 30 \mathrm{MeV}$
Lattice results :
Alpha Collab: $N_{f}=2$ Lattice; non-pert. renormalization $\Lambda=245 \pm 16 \pm 16 \mathrm{MeV}$ QCDSF Collab: $N_{f}=2$ Lattice, pert. reno. $\Lambda=261 \pm 17 \pm 26 \mathrm{MeV}$

3. The Needs : What would we like to know ?

HERA:

- Collect high luminosity for $F_{2}\left(x, Q^{2}\right), F_{2}^{c \bar{c}}\left(x, Q^{2}\right)$, $g_{2}^{c \bar{c}}\left(x, Q^{2}\right)$, and measure $h_{1}\left(x, Q^{2}\right)$.
- Measure : $F_{L}\left(x, Q^{2}\right)$. This is a key-question for HERA.

$F_{L}\left(x, Q^{2}\right)$

M. Klein, 2004: Projection for a possible measurement at HERA \Longrightarrow of central importance to study the small x behaviour of the gluon distribution

3. The Needs: What would we like to know ?

HERA:

e Collect high luminosity for $F_{2}\left(x, Q^{2}\right), F_{2}^{c \bar{c}}\left(x, Q^{2}\right)$, $g_{2}^{c \bar{c}}\left(x, Q^{2}\right)$, and measure $h_{1}\left(x, Q^{2}\right)$.
e Measure : $F_{L}\left(x, Q^{2}\right)$. This is a key-question for HERA.

RHIC \& LHC:

- Improve constraints on gluon and sea-quarks: polarized and unpolarized. DIS PDF's \Longleftrightarrow Collider PDF's

JLAB:

- High precision measurements in the large x domain at unpolarized and polarized targets; supplements HERA's high precision measurements at small x.

L_{q} from DVCS

- HERA and JLAB: Improve DVCS data

Theory widely developed, cf. rev. Belitsky \& Radyushkin, 2005

Expected DVCS asymmetry $A_{U T}^{\sin \left(\phi-\phi_{S}\right) \cos \phi}$ with $b_{v}=1, b_{s}=\infty, J_{u}=0.4(0.2,0.0)$, $J_{d}=0.0$ in the Regge (left panel) and factorized (right panel) ansatz, at the average kinematics of the full measurement. $E=0$ denotes zero effective contribution from the GPD E. The projected statistical error for 8M DIS events is shown. The systematic error is expected to not exceed the statistical one.
F. Ellinghaus et al., preliminary

The measurement of L_{q} off data is model-dependent at the moment.
Lattice calculations at low pion masses are needed to complete the picture

Graph Resummation and Saturation

Further study of proposed mechanisms needed: RHIC, LHC for nucleus-nucleus collisions.
ep scattering: partly different mechanisms
more studies would be welcome; link to higher twist contributions in gluon-dynamics
How do the non-perturbative and perturbative parts factorize ?
Conservation laws and interplay between the small x and medium x range behaviour

New DIS Machines

Where to go ?

e High energies : small x, large $Q^{2} \Longrightarrow$ talk M. Klein
e High luminosities: ELIC: \sqrt{s} between CERN and HERA energies

R. Ent,2004
high precision physics
polarized and unpolarized
Would be an important extension of the
present programmes in many respects.

Enhancing Precision Further...

e What is the correct value of $\alpha_{s}\left(M_{z}^{2}\right)$? $\overline{\text { MS-analysis vs. }}$ scheme-invariant evolution helps. Compare non-singlet and singlet analysis; careful treatment of heavy flavor. (Theory \& Experiment)
e Flavor Structure of Sea-Quarks: More studies needed. (All Experiments)

- Revisit polarized data upon arrival of the 3-loop anomalous dimensions; NLO heavy flavor contributions needed. (Theory)
e QCD at Twist 3: $g_{2}\left(x, Q^{2}\right)$, semi-exclusive Reactions, Transversity, diffraction in polarized scattering (HERMES, High Precision polarized experiments, JLAB, ELIC)
e Comparison with Lattice Results: α_{s}, Moments of Parton Distributions, Angular Momentum.

Enhancing Precision Further...

e Calculation of more hard scattering reactions at the 3-loop level: ILC, LHC
e Further perfection of the mathematical tools:
\Longrightarrow Algorithmic simplification of Perturbation theory in higher orders.
e Even higher order corrections needed?

