Summary of Heavy Flavour WG

Andy Mehta (U. Liverpool) <u>Gennaro Corcella</u> (CERN) <u>Massimo Corradi</u> (INFN Bologna)

R. Thorne: VFNS at NNLOOne more problem in defining VFNS. Ordering for
$$F_{2}^{H}(x,Q^{2})$$
 different for n_{f} and $n_{f} + 1$ regions. $n_{f} + 1$ regions. $n_{f} - 1$ region. $n_{f} - 1$ regio

Up to now ACOT have used e.g.

$$\mathsf{NLO} \qquad \frac{\alpha_S}{4\pi} C_{2,Hg}^{FF,1} \otimes g^{n_f} \to \frac{\alpha_S}{4\pi} (C_{2,HH}^{VF,1} \otimes (h + \bar{h}) + C_{2,Hg}^{FF,1} \otimes g^{n_f+1}),$$

i.e., same order of $lpha_S$ above and below.

But LO evolution below and NLO evolution above. Slope discontinuous.

TR have used e.g.

$$\mathsf{LO} \quad \frac{\alpha_{S}(Q^{2})}{4\pi} C^{FF,1}_{2,Hg}(Q^{2}/m_{H}^{2}) \otimes g^{nf}(Q^{2}) \to \frac{\alpha_{S}(M^{2})}{4\pi} C^{FF,1}_{2,Hg}(1) \otimes g^{nf}(M^{2})$$

$$+C^{VF,0}_{2,HH}(Q^2/m_H^2)\otimes (h+\bar{h})(Q^2)$$

i.e. freeze higher order α_S term when going upwards through $Q^2 = m_H^2$.

This difference in choice is extremely important at low Q^2 (if using $\mu^2 = Q^2$).

F₂^c RT style and ACOT style

Can produce full NNLO predictions for charm with discontinuous partons, but continuous $F^H(x,Q^2)$.

Approximation in $\mathcal{O}(\alpha_S^3)$ heavy flavour coefficient functions for $Q^2 \leq m_H^2$ and frozen for $Q^2 > m_H^2$.

Results not very sensitive to choices in this, within sensible range.

Clearly improves match to lowest Q^2 data, where NLO always too low.

- (New DIS & Jet data) Shift of Gluon for C5M to C6M is large
 - Charm PDF tied to gluon $(g \rightarrow cc)$
- Small <u>visual</u> difference between C6M and C6H

Shift due to both scheme and uncertainty

Ь-

G. Corcella, M. Corradi Summary of Heavy Flavour WG

6

determined the band of PDF's can greatly

underestimate the true uncertainty

Warning: The Director General has

oution	Reasonable χ^2 values	(CTFOK did not fit di muon data	ULE VO ala not ju al-muon auta			,	More parameters,		IOWEI VAIUE OF X			Uniy ai-muon data is	sensitive to s(x) !!!				•	•			Idea: and -har data	tuvu. unu vui uuu	separately determine	s and s-bar distributions
x) distril	Free	0.72	0.59	1.44	1.13	1.11	1.11	0.94	1.03	1.15	1.49	0.91	1.03	1.88	0.42	0.83	0.52	0.82	0.38	0.67	1.47	2133	S	
vary s()	Mixed	0.79	0.59	1.55	1.15	1.11	1.10	0.94	1.03	1.14	1.51	0.91	1.06	1.81	0.44	0.82	0.52	0.82	0.39	0.70	1.48	2142	91 data point	, E
bal Fit:	Constrained	0.85	0.54	1.70	1.30	1.11	1.10	0.95	1.03	1.14	1.50	0.91	1.07	1.71	0.42	0.82	0.61	0.83	0.40	0.65	1.48	2144	Total of 19	0207-012 20
Glo	CTEQ6M	1.02	0.58	1.81	1.48	111	1.10	0.94	1.02	1.14	1.52	0.91	1.05	1.70	0.42	0.82	0.62	0.82	0.39	0.71	1.48	2173		et al <u>.</u> IHFP
	χ^2 / DOF	CCFR Nu	CCFR Nu-bar	NuTeV Nu	NuTeV Nu-bar	BCDMS F2p	BCDMS F2d	H1 96/97	H1 98/99	ZEUS 96/97	NMC F2p	NMC F2d/F2p	NMC F2d/F2p <q<sup>2></q<sup>	CCFR F2	CCFR F3	E605	NA51	CDF ℓ Asym	E866	D0 Jets	CDF Jets	TOTAL	-	CTFO6- I Pumplin

N umpini, et al., 5 .))) 5

10 G. Corcella, M. Corradi Summary of Heavy Flavour WG

A. Mitov: Soft Resummation for HQ in DIS

Interplay between soft logs and quark masses.

$$H^{soft}(z, \mu_F^2, \lambda) = 2C_F \left\{ 2 \left(\frac{\ln(1-z)}{1-z} \right)_+ - \left(\frac{\ln(1-\lambda z)}{1-z} \right)_+ + \frac{1}{4} \left(\frac{1-z}{(1-\lambda z)^2} \right)_+ + \frac{1}{4} \left(\frac{1$$

z - related to the partonic equivalent of the Bjorken variable.

However: the z->1 behavior depends very strongly on the value <u>of the mass m (through λ).</u> Since z->1 effects become important also for moderate values of z (0.6 – 0.8), we divide the mass range into:

massive case: m/Q~1 , i.e. λ<<1, massless case: m/Q<<1 , i.e. λ ≈1.

A. Mitov

Soft resummation for heavy quark production A. Mitov

	A. Mitov: NNLO HQ Fragmentation Function his way, all large logs are absorbed in the function $E_{ab}(\mu, \mu_0, z)$ and are
¥ [esumed with the DGLAP equation to all orders in α_S . herefore to achieve resummation up to logarithmic order n, one needs the
II	litial condition to order n and the splitting functions to the same order.
Ι	$\begin{aligned} D_{a \to \mathcal{Q}}^{\mathrm{ini}}(\mu_0, m, z) &= \delta_a \mathcal{Q} \delta(1-z) + \frac{\alpha_s}{2\pi} d_{a \to \mathcal{Q}}^{(1)} + \left(\frac{\alpha_s}{2\pi}\right)^2 d_{a \to \mathcal{Q}}^{(2)} + \cdots \\ &= \mathrm{LL} + \mathrm{NLL} + \mathrm{NNLL} + \cdots \end{aligned}$
	• $d^{(1)}$ - computed by Mele and Nason (1991).
	• We have evaluated $d_{a \to Q}^{(2)}$ for $a = Q$, \overline{Q} , q, \overline{q} , gluon.
	Collect all pieces:
q_i	$\sigma_{H} = (f_{\ldots}) \otimes \widehat{d\sigma}_{a}(Q,\mu) \otimes E_{ab}(\mu,\mu_{0}) \otimes D_{b \to \mathcal{Q}}^{\mathrm{ini}}(\mu_{0},m) \otimes D_{\mathcal{Q} \to H}^{\mathrm{n.p.}} + \mathcal{O}(m/Q)^{p}$
A. Mitov	DIS 2005

13 G. Corcella, M. Corradi Summary of Heavy Flavour WG

N7 MIN

Various components to PFF and the participating sub-processes at treelevel:

1. $D_{Q \to Q}^{\text{ini}}$: • $Q \to Q + g + g$, • $Q \to Q + q + \overline{q}$, • $Q \to Q + Q + \overline{Q}$.

II. $D_{\overline{Q} \to Q}^{\text{ini}}$:

• $\overline{\mathcal{Q}} \to \mathcal{Q} + \overline{\mathcal{Q}} + \overline{\mathcal{Q}}$.

$$\begin{split} \text{III.} \quad D_{q(\overline{q}) \to \mathcal{Q}}^{\text{ini}} : \\ \bullet \quad q(\overline{q}) \to \mathcal{Q} + \overline{\mathcal{Q}} + q(\overline{q}). \\ \text{IV.} \quad D_{g \to \mathcal{Q}}^{\text{ini}} : \end{split}$$

• $g \to \mathcal{Q} + \overline{\mathcal{Q}} + g$.

A. Mitov

and CON		ven by:				03/11
m, Extending CSM	he CSM:	bart ($Qar{Q}$ production) is thus gi	Typical diagram here	nenological vertex function: d ²	$p[\frac{-p_{rel}}{\Lambda^2}]$ (in the CM frame)	DIS05 – 28-04-2005
J. Lansberg: Heavy Quarkoniu	\Rightarrow Beyond the static approximation of th $\int \psi(p_{rel}) \mathcal{A}(p_{rel}) dp_{rel}$	We shall only consider here Disc A; the hard p	Typical diagram for CSM	➡The soft part (non-perturbative), by a phenon M	$\psi(p,P) = \frac{N}{(1-\frac{\tilde{p}_{rel}^2}{\Lambda^2})^2} \text{ or } N \text{ ext}$	Jtわら、CAMSB任代での中工 Fummary of Heavy Flavour WG

08/11

DIS05 - 28-04-2005

lotivation for NLO: Reduction of renormalization and factorization scale dependence. Sizeable effects, e.g. due to opening of new partonic production channels. Ultimate test of NRQCD factorization by global NLO fit. High-statistics data from HERA II, Tevatron Run II, LHC, ILC. revious NLO calculations: $\gamma p \rightarrow J/\psi + X$ w/ direct γ and J/ψ for $p_T > 0$ in CSM M. Krämer, J. Zunft, J. Steegbo
revious NLO calculations: $\gamma p o J/\psi + X$ w/ direct γ and J/ψ for $p_T>0$ in CSM M. Krämer, J. Zunft, J. Steego
M. Zerwas, Phys. Lett. B348 (1995) 657; M. Krämer, Nucl. Phys. B459 (1996) 3. $\gamma p \rightarrow J/\psi + X$ w/ direct γ and J/ψ for $p_T = 0$ in NRQCD F. Maltoni, M.L. Mangano, Petrelli, Nucl. Phys. B519 (1998) 361. $p\bar{p} \rightarrow J/\psi + X$ for $p_T = 0$ in NRQCD A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, M.L. Mangar Icl. Phys. B514 (1998) 245.
ere: $\gamma\gamma \rightarrow J/\psi + X$ w/ direct γ 's and prompt J/ψ for $p_T > 0$ in NRQCD X purely hadronic: compensate μ_R dependence of LO single-resolved contribution X w/ prompt γ : direct photoproduction dominant

B. Kniehl: NLO Charmonium production in $\gamma\gamma$

DIS 2005

Heavy Flavors

19 G. Corcella, M. Corradi Summary of Heavy Flavour WG

16

 $\gamma\gamma \to J/\psi + \gamma + X$

DIS 2005

18

OverviewSubject of this talk:Subject of this talk:• 1-particle inclusive hadroproduction of D mesons: $p\bar{p} \rightarrow (D^0, D^{*+}, D^+, D^+) X$ • Massive Variable Flavour Number Scheme (Massive VFNS):
Subject of this talk: • 1-particle inclusive hadroproduction of D mesons: $p\bar{p} \rightarrow (D^0, D^{*+}, D^+, D^+^)X$ • Massive Variable Flavour Number Scheme (Massive VFNS):
 1-particle inclusive hadroproduction of <i>D</i> mesons: pp → (D⁰, D^{*+}, D⁺, D⁺⁺)X Massive Variable Flavour Number Scheme (Massive VFNS):
 Massive Variable Flavour Number Scheme (Massive VFNS):
– Collinear logarithms of the heavy quark mass $\ln \mu/m_h$ are subtracted and resummed
– finite non-logarithmic m_h/Q terms are kept in the hard part/taken into account
 Scheme based on the factorization theorem of Collins with heavy quarks
Further applications:
$ullet$ 1-particle inclusive hadroproduction of B mesons: $par{p} o BX$
• Completes earlier work on D meson production in $\gamma\gamma$ and γp collisions:
$\gamma \rightarrow D^{\star}X$: direct process
$\gamma \rightarrow D^{\star}X$: single-resolved process
$-\gamma p \rightarrow D^{\star} X$: direct process

Calculation: $\overline{\mathrm{MS}}\text{-scheme},$ heavy quark: $m_Q=0$

- Red: Heavy quark mass effects included
- Green: Heavy quark initiated: $m_Q=0$
- Blue: only light lines involved

							$qg \to \bar{Q}X$	$qg \to QX$			$q\bar{q} \rightarrow QX$	$q\bar{Q} \to gX$	$q\bar{Q} \to qX$	qQ o gX	qQ o qX
gg ightarrow QX		Qg ightarrow gX	Qg ightarrow QX	$Q \bar Q o g X$	$Q \bar Q o Q X$	$Qg o ar{Q}X$	Qg o ar q X	Qg o qX	QQ ightarrow gX	QQ ightarrow QX	$Q\bar{Q} o qX$	$Q \bar{q} ightarrow g X$	$Q \bar{q} ightarrow Q X$	Qq ightarrow gX	Qq ightarrow QX
gg o qX	$gg \to gX$	$qg \to gX$	qg o qX	$q\bar{q} ightarrow gX$	$q \bar{q} ightarrow q X$	$qg o \bar{q}X$	$qg \to \bar{q}' X$	qg o q'X	qq o gX	qq o qX	$q\bar{q} o q' X$	$q \bar{q}' ightarrow g X$	$q \bar{q}' o q X$	$qq' \to gX$	$qq' \to qX$

[1] Aversa, Chiappetta, Greco, Guillet, NPB327(1989)105

Ξ

Ξ

 $, D^{+}, D^{+}_{s})X$

 (D^0, D^{*+})

Comparison with CDF II data for $p \bar{p}
ightarrow$

• Uncertainty band: independent variation of $\mu_{R}, \mu_{F}, \mu_{F}' = \xi m_{T}, \xi \in [1/2, 2]$

• $d\sigma/dp_T \ (nb/GeV)$, $|y| \leq 1$, massive VFNS (GM-VFNS)

- Prompt charm (no secondary charm from B decay)
- Data and Theory compatible within errors •
- Central values: $Data/Theory \simeq 1.5 1.8$

Experimental part

24 G. Corcella, M. Corradi Summary of Heavy Flavour WG

(LO massless scheme)

Inclusive D^* photoproduction in general agreement with NLO

New measurements try to be more exclusive:

- D^* -jets: small fragmentation uncertainty
- D^*+ " other jet", D^*+ dijets: further handle on parton dynamics wide acceptance for "other jet"
- study the c/g nature of the "other-jet" from jet shape
- parameters needed for precise measurements of c production • Fragmentation fractions and fragmentation function: test of fragmentation universality

T. Kohno: ZEUS D^* jets photoproduction

Events with a D^* and ≥ 1 jet $(E_T > 6 \text{GeV})$

 D^* -jet and "other"-jet distribution

Consistent with NLO massive (FMNR) and Massless calculations

T. Kohno: ZEUS D^{*} dijets

Dijet correlations, directly sensitive to NLO corrections

FMNR too low at large p_T^{jj} and low $\Delta\phi$

Need higher orders or matching with PS

G. Fluke: H1 Charm+jet photoproduction

 D^* and "other"-jet $P_T > 3$ GeV (tagged PhP)

 Δ_{ϕ} not well reproduce by massive and massless NLO

R. Lefevre: b-jets from CDF

Dijet b production

- Jet algorithm: JetClu with $R_{cone} = 0.7$
- Kinematical range
- -2 b-jets within $|\eta| < 1.2$
- $~E_T^{1st \ b-jet} > 30 ~GeV, ~E_T^{2nd \ b-jet} > 20 ~GeV$
- Data sample: 65 pb⁻¹
- Jet 20 only (prescaled trigger)
- Comparison to $MC@NLO \oplus JIMMY$
- Default JIMMY Small MC sample

<u>M. Martisikova: H1 Charm jet shape in photoproduction</u>

One jet tagged as charm from muon Look at the shape of the other jet, is it charm or gluon ? Dijet photoproduction

Jet Shape - Detector Level Measurement

A. Perieanu: H1 Charm jet shapes in DIS

R.Walsh: ZEUS charm fragmentation fractions in DIS

Z. Rurikova: H1 Charm fragmentation function in DIS

 D^* DIS data

 Z_{hem} : fraction of hemisphere E + P carried by the D^*

Fit with Jetset with Peterson Fragmentation

 $\epsilon = 0.018^{+0.004}_{-0.004}$

lower than ZEUS photoproduction result

c and b production in DIS and HQ pdfs

c (and b) are a sizeable fraction of F_2

direct access to gluon pdf

b-pdf important for e.g. (MSSM) Higgs searches $(b\bar{b} \rightarrow H)$

Traditionally D^* production in DIS used by ZEUS/H1, then extrapolated to full kinematics to get F_2^c New measurements:

- H1 F_2^c/F_2^b measurement using inclusive track impact parameter
- NuTeV Charm production in CC
- **ZEUS** D^* at $0.05 < Q^2 < 0.7 \text{GeV}^2$
- **D0**: *b*-pdf from Z + b
- ZEUS Charmonium production in DIS
- First ZEUS results from HERA-II data

T. Klimkovich: F_2^c and F_2^b using the H1 vertex detector

H1 measurement of F_2^c and F_2^b based on track impact parameter

Extended to $Q^2 < 100 \text{GeV}^2$

Large track acceptance: small extrapolation to F_2

 $S = \delta / \sigma$

 $\delta =$ signed track impact parameter sign given by jet or HFS direction

atsiana Klimkovich (H1 Collaboration)

DIS 2005, Madison, Wiscor

36 G. Corcella, M. Corradi Summary of Heavy Flavour WG

G. Aghuzumtsyan: Charm production at $0.05 < Q^2 < 0.7 \text{GeV}^2$

ZEUS beampipe calorimeter (BPC) tags events in the transition region DIS-Photoproduct

 $0.05 < Q^2 < 0.7 \text{GeV}^2$ 0.02 < y < 0.085 (< 0.085 in the plot)

98-00 data: $239 \pm 23D^*$ with $p_T > 1.5 \text{GeV}$, $|\eta| < 1.5$

Signed selected beam, look at s(x) and $\bar{s}(x)$ independer BGPA Complete data sample (20 times previous results) MRST98 $S^{-} = 0.0068$ required to explain $\sin^2 \theta_W$ anomaly LO preliminary - old analysis in black LO analysis, extract $S^{-} = \int dx \ x(s(x) - \overline{s}(x))$ Strange asymmetry compatible with zero **GRV98** CTEQ6L MeM CTEQ5L old $\nu N \to \mu^- c (\to \mu^+) X$ BGPARold 80000 **S** 0.006 -0.002 0.004 0.002 0 Hadrons PLACE: SHEND: 6030 Event: 194345 Tgate: 1 Date: Thu May & 14:28:21 194 EMU: ers: 1 2 3 4 5 6 7 8 9 10111213 D)S y-view ≥ x-view 5

D. Mason: NuTeV s/\overline{s} sea

39 G. Corcella, M. Corradi Summary of Heavy Flavour WG

 $p\bar{p} \rightarrow Z + b$ production sensitive to b-pdf

180 \mathbf{pb}^{-1} of Run-II data ~ 5000 $Z(\rightarrow l^+l^-)+\mathbf{jet}$ ev

require a secondary vertex significance > 7

 $\frac{\sigma(Z+bjets)}{\sigma(Z+jets)} = 0.021 \pm 0.004 (\text{stat.})^{+0.002}_{-0.003} (\text{syst.})$

Theory: 0.018 ± 0.004 (**NLO+CTEQ6**)

A. Antonov: ZEUS J/ψ in DIS

Measurement of J/ψ production in DIS, $Q^2 > 2 \text{GeV}^2$

Agreement with H1

LO NRQCD COM too large mostly excess at large z resummation needed

LO CSM slightly low

Normalized Differential Cross Section

- shape of the p_t distribution does not vary much with Y rapidity
 Reasonable
- agreement with calculation of Berger, Qiu, Wang

R. Hall-Wilton: ZEUS D^* production in DIS in 03-05 data

ZEUS muon impact parameter

ZEUS has now a silicon microvertex detector (MVD) at HERA-II

First results:

muon impact parameter (δ) from 03-04 data (31pb⁻¹)

 $\mu + dijets$ events

negative-positive subtracted δ distribution consistent with b and c from p_T^{rel}

b production

Though m_b is larger than m_c , b production has been more problematic

Recent μ +dijet analyses from ZEUS and H1 don't confirm the large excess The beauty "puzzle" seems to be over: of early measurements

Is b production at HERA completely understood ?

New measurements:

- μ +jets H1 published final data
- H1 dijet photoproduction with inclusive impact par. tag
- analyses from μ correlations (ZEUS) and $D^*\mu$ correlations (H1) give access at low p_T
- HERA-b new results for hadroproduction

O. Behnke: H1 b from \mu+dijets Photoproduction

H1 recently published analysis of beauty production in dijet events with muons.

Muon impact parameter and p_T^{rel} to extract the b fraction

46 G. Corcella, M. Corradi Summary of Heavy Flavour WG

9

H1 b from μ +jet DIS

Beauty in DIS: Compare H1 and ZEUS results

L. Finke: H1 b, c dijet photoproduction

H1 results with inclusive IP tagging, general agreement with muon results

A.Longhin INFN Padova

ZEUS: b production with µµ correlations

DIS05 Madison (Wisconsin) 29/04/2005

ZEUS b from dimuon

Double muon tag, lower background, looser muon cuts:

 $-2.2 < \eta^{\mu} < 2.5 \ p_t^{\mu 1} > 1.5 \text{GeV} \ p_t^{\mu 1} > 0.75 - 1.5 \text{GeV}$ (depending on η)

small extrapolation to full cross section

N. Malden, H1 c and b from $D^*\mu$ correlations

Similar principle as dimuon analysis charm normalization compatible with NLO, b factor 4 larger, large errors Recently published analysis from H1

Good agreement with NLO calculation

Latest version of the Summary plot

K. Read: PHENIX charm and charmonium

HQ as probe of dense matter

Open c tagged with leptons

Heavy Flavor Production (electrons)

Pattern consistent with models incorporating heavy quark energy loss.

Charm Phisics at Belle (B. Yabsley) and BaBar (C. Chen)

Incredible amount of data on old and new charmed hadrons

Belle

BaBar

0

- \bullet I've left out most of our charm & charmonium studies
- X(3872) observⁿ & updated measurement of properties
- no natural charmonium candidate has been found
- $X
 ightarrow \gamma J/\psi$ and $\omega J/\psi$ observations fix C=+1
- angular and $M(\pi^+\pi^-)$ distributions favour $J^{PC}=1^{++}$
- decays & properties consistent with ${\rm D}^0\overline{\rm D}{}^{*0},$ but not χ_{c1}'
- $e^+e^- \rightarrow \psi \eta_c$ results (finally) confirmed by BaBar; disagreement with NRQCD [also open charm] still unexplained
- $X(3940)
 ightarrow {\sf DD}^*$ (not the X(3872), not the $Y(3940)
 ightarrow \omega J/\psi)$ \rightarrow publication this summer
- other spectroscopic contributions: D_{sJ} , $\Sigma_c(2880)$, ...
- Θ^+ search [negative!]: QE formation limit by the summer
- D^0 , D^+ , D_s , Λ_c^+ fragmentation \rightarrow publication at summer

DIS'05 29-Apr-2005 Unexplained results from Belle

Bruce Yabsley

- Semileptonic D⁰ mixi
 - Search D⁰→l⁺l⁻
- Search for D_{sJ}(2632
- $\Xi^0_c \rightarrow \Omega \cdot K^+, \ \Xi^0_c \rightarrow \Xi \cdot \pi^+$
- Λ_c mass measuremen

Conclusions

- Great data on c,b in DIS and γp still coming from HERAdata
- Is there a problem in the description of beauty at low p_T ?
- Results on s(x) from NuTeV
- waiting for HERA-II analyses

