- Traditionally: Lepton-nucleon spin physics
 - Helicity distribution $g_1(x)$
 - Helicity sum rule $\Delta\Sigma$
 - *g*₂, ...
- New(er) topics
 - Transversity distribution
 - Collins, Sivers, ... effects
 - Higher twist contributions
 - Fragmentation in semi-inclusive DIS

- HERMES @ DESY
- COMPASS @ CERN
- Hall A @ JLAB
- CLAS (Hall B) @ JLAB

HERMES @ DESY

Hall A @ JLAB

CLAS (Hall B) @ JLAB

Time of Flight Scintillators

Drift Chambers

beam

exp	E_b (GeV)	x	Q^2 (GeV ²)	P_b
HERMES	27.6 e [±]	0.02-0.6	1 - 15	± 0.55
COMPASS	\mid 160 μ	0.003 - 0.6	1 - 100	-0.76
JLAB	<6 e [−]	0.1 - 0.7	1 - 4.5	± 0.7

exp	E_b (GeV)	x	Q^2 (GeV ²)	P_b
HERMES	27.6 <i>e</i> [±]	0.02-0.6	1 - 15	± 0.55
COMPASS	160 μ	0.003 - 0.6	1 - 100	-0.76
JLAB	<6 <i>e</i> [−]	0.1 - 0.7	1 - 4.5	±0.7

exp	P_t	target	\mathcal{L} (cm $^{-2}$ s $^{-1}$)
HERMES	0.85	\vec{H}, \vec{D}	10^{31}
COMPASS	0.50	ĹiĎ	$5 \cdot 10^{32}$
Hall A	0.35	3 He	10^{36}
CLAS	0.8 (0.3)	NH_3 (ND_3)	10^{34}

 $\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{2MQ^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$

Measure:
$$A_{\parallel} = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}}$$

$$A_{1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}}$$

$$A_{\parallel} = D.(A_{1} + \eta A_{2})$$

$$D = \frac{y(2 - y)}{y^{2} + 2(1 - y)(1 + R)} \qquad \frac{g_{1}}{F_{1}} = \frac{1}{1 + \gamma^{2}} \left(\frac{A_{\parallel}}{D} - (\eta - \gamma)A_{2}\right)$$

$$R = \frac{\sigma_{L}}{\sigma_{T}}$$

A_1 **(a) high** x

Hall A @ JLAB PRL 92, 012004 (2004) PRC 70, 065207 (2004)

A_1 @ high x

$g_1 @ low x$

→ talk by J.Hannappel

$g_1 \otimes \mathbf{low} x$

Important for low-x extrapolation $\Rightarrow \Delta \Sigma$

$$\Delta\Sigma(Q^2 = 4) = 0.202^{+0.042}_{-0.077} \to 0.237^{+0.024}_{-0.029}$$

Blümlein & Böttcher HERMES preliminary

Blümlein & Böttcher

HERMES preliminary

- Well established in valence region
- Extrapolation to $x \to 0$ problematic

•
$$\Delta\Sigma = 0.14 \cdots 0.20$$

Blümlein & Böttcher HERMES preliminary

Blümlein & Böttcher HERMES preliminary

Large uncertainties

 $\Delta G = 0.68 \cdots 1.26$

Blümlein & Böttcher HERMES preliminary Large uncertainties

Need direct method

Photon-gluon fusion

Use fluctuation of g into $q\bar{q}$ to interact with γ^*

Photon-gluon fusion

Use fluctuation of g into $q\bar{q}$ to interact with γ^* Tag through:

- production of high- p_T hadrons
- (open-)charm production

Photon-gluon fusion

Use fluctuation of g into $q\bar{q}$ to interact with γ^* Tag through:

- production of high- p_T hadrons
- (open-)charm production

Competing mechanisms generate background

- Relative contributions
- Individual asymmetries
- from model (HERMES)
- small (COMPASS)

Gluon polarization

• Large ΔG less likely: $\Delta G \approx 0.5$

2004 data of COMPASS still to come

 \rightarrow talk by C.Bernet

g_2 structure function

 $\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{2MQ^4} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$

g_2 structure function

g_2 structure function

q₂ structure function

Transversity $h_1(x)$

Complete description of nucleon in leading order QCD: 3 Distribution Functions

Transversity $h_1(x)$

Complete description of nucleon in leading order QCD: 3 Distribution Functions

Transversity $h_1(x)$

 $\sim \tilde{\psi} \gamma^{\mu} \psi$

Complete description of nucleon in leading order QCD: 3 Distribution Functions

Quark density

 $\sim \tilde{\psi} \gamma^{\mu} \gamma_5 \psi$ Helicity

Transversity $\sim \tilde{\psi} \sigma^{\mu\nu} \gamma_5 \psi$
Complete description of nucleon in leading order QCD: 3 Distribution Functions

 $\sim \tilde{\psi} \gamma^{\mu} \psi$

Vector charge

 $\sim \tilde{\psi} \gamma^{\mu} \gamma_5 \psi$

Axial charge

$\sim \tilde{\psi} \sigma^{\mu \nu} \gamma_5 \psi$ Tensor charge

Complete description of nucleon in leading order QCD: 3 Distribution Functions

Complete description of nucleon in leading order QCD: 3 Distribution Functions

Complete description of nucleon in leading order QCD: 3 Distribution Functions

• For relativistic quarks: $h_1^q(x) \neq g_1^q(x)$

• For relativistic quarks: $\delta q(x) \neq \Delta q(x)$

• For relativistic quarks: $h_1^q(x) \neq g_1^q(x)$

• For relativistic quarks: $h_1^q(x) \neq g_1^q(x)$

Decouples from gluons:

• For relativistic quarks: $h_1^q(x) \neq g_1^q(x)$

Decouples from gluons:

Inaccessible in inclusive DIS

• For relativistic quarks: $h_1^q(x) \neq g_1^q(x)$

Decouples from gluons:

Inaccessible in inclusive DIS

Need e.g. fragmentation function

Semi-inclusive DIS

 $\sigma^{ep \to ehX} = \sum f^{p \to q} \otimes \sigma^{eq \to eq} \otimes D^{q \to h}$ \boldsymbol{q}

Semi-inclusive DIS

Semi-inclusive DIS

 $\sigma^{ep \to ehX} = \sum f^{p \to q} \otimes \sigma^{eq \to eq} \otimes D^{q \to h}$ ĸ q \boldsymbol{q} р Longitudinally polarized: $g_1(x)$ $D_1(z)$ P **Transversely** polarized: $h_1(x)$ $H_1^{\perp}(z)$

Both chiral odd

Quark *Fragmentation* functions

Quark *Fragmentation* functions

Functions surviving integration over intrinsic transv. momentum

Quark *Fragmentation* functions

Functions surviving integration over intrinsic transv. momentum

Collins effect

Chiral odd fragmentation function

 $H_1^{\perp} = \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right)$

- Iransverse spin of quark \rightarrow transverse motion of hadron
- Some estimates from LEP:

$$\frac{\langle H_1^{\perp} \rangle}{\langle D_1 \rangle} = 6.3\%, 12.5\%, \approx 4\%, \dots???$$

- Can be negative!
 Correlation between direction of outgoing hadron and transverse spin of quark
- Manifests itself in Single-Spin Azimuthal asymmetry

Single Spin Asymmetries

Different definitions!

COMPASS, hep-ex/0503002

- COMPASS 02 data
- Deuterium target
- Consistent with 0

 \rightarrow talk by P.Pagano

- proton: $|A_{UT}^{\pi^-}| \gtrsim |A_{UT}^{\pi^+}|$
- deuteron: $A_{UT}^{\pi^-} \approx A_{UT}^{\pi^+} \approx 0$

- **•** proton: $|A_{UT}^{\pi^-}| \gtrsim |A_{UT}^{\pi^+}|$
- deuteron: $A_{UT}^{\pi^-} \approx A_{UT}^{\pi^+} \approx 0$

- cancellation between p and n asymmetries
- non-trivial behaviour of Collins FF
- **_** ..

 \Rightarrow

• proton: $|A_{UT}^{\pi^-}| \gtrsim |A_{UT}^{\pi^+}|$

 \Rightarrow

• deuteron: $A_{UT}^{\pi^-} \approx A_{UT}^{\pi^+} \approx 0$

- \bullet cancellation between p and n asymmetries
- non-trivial behaviour of Collins FF

- \Rightarrow need independent access to h_1 e.g. two-hadron production through "interference FF"
- → talks by P.Van der Nat, R.Joosten

● proton: $|A_{UT}^{\pi^-}| \gtrsim |A_{UT}^{\pi^+}|$

 \Rightarrow

• deuteron: $A_{UT}^{\pi^-} \approx A_{UT}^{\pi^+} \approx 0$

- \bullet cancellation between p and n asymmetries
- non-trivial behaviour of Collins FF
- ⇒ need independent access to H_1^{\perp} e.g. from high-statistics e^+e^- BELLE data → talk by R.Seidl

 $A_{UT}^{\sin\Phi} \propto \sum_{q} e_q^2 f_1^{\perp,q}(x) D_1(z)$

 $A_{UT}^{\sin\Phi} \propto \sum_{q} e_q^2 f_1^{\perp,q}(x) D_1(z)$

$$A_{UT}^{\sin\Phi} \propto \sum_q e_q^2 f_1^{\perp,q}(x) D_1(z)$$

Chiral odd distribution function?

Several recent ideas:

$$A_{UT}^{\sin\Phi} \propto \sum_q e_q^2 f_1^{\perp,q}(x) D_1(z)$$

Chiral odd distribution function? $f_{1T}^{\perp} =$

Several recent ideas:

Brodsky, Hwang, Schmidt

- Quark rescattering
- Generates SSA
- Requires L_z of quarks

$$A_{UT}^{\sin\Phi} \propto \sum_q e_q^2 f_1^{\perp,q}(x) D_1(z)$$

Chiral odd distribution function? $f_{1T}^{\perp} =$

Several recent ideas: BL

Burkardt

- Spatial distortion of q-distribution
- Attractive QCD-potential
- Generates SSA
- Implies L_z of quarks

Collins vs Sivers effect

- Appear at leading twist
- Depend on different azimuthal angles:
 - Collins: correlation spin struck quark and momentum hadron
 - Sivers: correlation spin nucleon and transverse momentum quark

Collins vs Sivers effect

- Appear at leading twist
- Depend on different azimuthal angles:
 - Collins: correlation spin struck quark and momentum hadron
 - Sivers: correlation spin nucleon and transverse momentum quark

Collins vs Sivers effect

- Appear at leading twist
- Depend on different azimuthal angles:
 - Collins: correlation spin struck quark and momentum hadron $\Rightarrow \phi_C = \phi + \phi_S$
 - Sivers: correlation spin nucleon and transverse momentum quark $\Rightarrow \phi_S = \phi \phi_S$

Sivers asymmetries

New COMPASS results on D -target:

Sivers asymmetries

Sivers asymmetries

- Good statistics data available
- Orbital angular momentum $L_z \neq 0$
- Flavour separation possible
- Has importance beyond lepton-nucleon scattering pp-scattering
RHIC - spin

 $\mathcal{L}_{\mathbf{p}eak} = 1 \cdot 10^{31} \mathbf{cm}^{-2} \mathbf{s}^{-1}$

 $P_b \sim 45\%$

RHIC: pQCD

RHIC: single spin asymmetries

Run 02 data ($P_b \sim 0.15$) Experiments ready for high-statistics runs

→ talks by S.Heppelmann, M.Chiu, F.Videbaek

RHIC: double spin asymmetries

Polarized $\vec{p}\vec{p}$ scattering also offers access to ΔG

Higher twist effects

- \bullet g_2 measurements
- HERMES longitudinal SSA contain Collins, Sivers and Twist-3 part

 \rightarrow talk by M.Diefenthaler

 Beam-spin SSA depend on Twist-3 DF ⊗ Collins FF
→ talk by H.Avakian

Summary

- Very active field, also theory
- "Old" topics: much improved accuracy
- "New" topics, new facilities

Looking forward to lively discussions in Working Group