

Ivan Vitev, LANL

Power Corrections to Structure Functions

DIS 2005 International Workshop, April 27 - May 1, 2005 University of Wisconsin at Madison, Madison, WI

- Structure functions and parton distributions:
 - Relations to lowest order and leading twist
- Electromagnetic current and DIS:
 - Resumming coherent QCD power corrections
 - Modifications to F₂ and F_L
- Weak current and DIS:
 - \bullet Valence and sea quark "shadowing" in $\,\nu + A$
 - F₃ and QCD sum rules
- p+A reactions at RHIC:
 - Dynamical gluon "shadowing" particle yields and correlations
- Summary:

April 27 - May 1, 2005

Inclusive Deeply Inelastic Lepton-Hadron Scattering

Variables:
$$q = k - k', v = E - E',$$

 $y = (E - E')/E, Q^2 = -q^2, x = Q^2/(2p \cdot q)$

$$\frac{d\sigma_{lh}}{dxdy} = \frac{4\pi\alpha_{em}}{Q^2} \frac{1}{xy} \left[\frac{y^2}{2} 2xF_1(x,Q^2) + \left(1 - y - \frac{m_N xy}{2E}\right)F_2(x,Q^2) \right]$$

$$F_1(x,Q^2), \ F_2(x,Q^2) \quad \text{- the DIS structure functions}$$

QCD kicks in with the parton model / factorization

Convenient to calculate in a basis of polarization states of g^*

$$F_{T}(x,Q^{2}) = F_{1}(x,Q^{2}),$$

$$F_{L}(x,Q^{2}) = \frac{F_{2}(x,Q^{2})}{2x} - F_{1}(x,Q^{2})$$
if $\frac{4x^{2}m_{N}^{2}}{Q^{2}} \ll 1$

 $F_{T}(x,Q^{2}) = \frac{1}{2} \sum_{f} Q_{f}^{2} \int d\lambda_{0} e^{ix\lambda} \left\langle p \left| \overline{\Psi}(0) \frac{\gamma^{+}}{2 p^{+}} \Psi(\lambda_{0}) \right| p \right\rangle$ $= \frac{1}{2} \sum_{f} Q_{f}^{2} \phi_{f}(x,Q^{2}) + \mathcal{O}(\alpha_{s})$ $F_{L}(x,Q^{2}) = 0 + \mathcal{O}(\alpha_{s})$ Lowest Order and Leading Twist relation

Used to determine the parton distribution functions (PDFs)

Both simple and dangerous

April 27 - May 1, 2005

Lepton+Nucleus from Theory

The Idea Behind the Calculation

• Lightcone gauge: $A \cdot n = A^+ = 0$ • Breit frame: $\overline{n} = [1, 0, 0_{\perp}], n = [0, 1, 0_{\perp}]$ $q = -xp^+\overline{n} + \frac{Q^2}{2xp^+}n, p = \overline{n}p^+, xp + q = \frac{Q^2}{2xp^+}n$

Perturbative

Numerical A- and x_B-Dependence

Purely quantum exp $\left[+\frac{\xi^{2}(A^{1/3}-1)}{Q^{2}}x\frac{d}{dx}\right]F_{2}(x)$ effect $F_{T}^{A}(x,Q^{2}) \approx A F_{T}^{(LT)}\left(x+\frac{x\xi^{2}(A^{1/3}-1)}{Q^{2}},Q^{2}\right)$

The scale of higher twist per nucleon is small $\xi^2 \simeq 0.1 \ GeV^2$

 Favorable comparison for the x- and A-dependence NA37 (NMC) and E665 data

• For $Q^2 \rightarrow 0$ we impose $Q^2 = m_N^2$. (discussion of $\mathcal{O}(\alpha_s^n)$ and parton size)

J.W.Qiu, I.V., Phys.Rev.Lett. 93 (2004)

April 27 - May 1, 2005

Q²-dependence and F_L(x,Q²) from Power Corrections

J.W.Qiu, I.V., Phys. Rev. Lett. 93 (2004)

Two more tests:

NMC data shows evidence for a power law in $1/Q^2$ behavior in $F_2(Sn)/F_2(C)$

$$\mathbf{R}(x,Q^2) = \frac{\boldsymbol{\sigma}_L}{\boldsymbol{\sigma}_T} = \frac{\boldsymbol{F}_L(x,Q^2)}{\boldsymbol{F}_1(x,Q^2)}$$

$$F_L^A(x,Q^2) \approx A F_L^{(LT)}(x,Q^2) + \frac{4\xi^2}{Q^2} F_T^A(x,Q^2)$$

• The Leading Twist (LT) $R(x,Q^2)$ is not sensitive to modifications of the nPDFs

How to Check the Origin of Shadowing

Experimental data

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ita
$\begin{array}{cccc} F_2^{He}/F_2^D & \text{NMC} & [13] & 18 \\ & & \text{SLAC-E139} & [14] & 18 \end{array}$	
SLAC-E139 [14] 18	
F_2^{Be}/F_2^D SLAC-E139 [14] 17	
F_2^C/F_2^D NMC [13] 18	
SLAC-E139 [14] 7	
F_2^{Al}/F_2^D SLAC-E139 [14] 17	
F_2^{Ca}/F_2^D NMC [13] 18	
SLAC-E139 [14] 7	
F_2^{Fe}/F_2^D SLAC-E139 [14] 23	
F_2^{Ag}/F_2^D SLAC-E139 [14] 7	
F_2^{Au}/F_2^D SLAC-E139 [14] 18	
F_2^{Be}/F_2^C NMC [15] 15	
F_2^{Al}/F_2^C NMC [15] 15	
F_2^{Ca}/F_2^C NMC [15] 15	
F_2^{Fe}/F_2^C NMC [15] 15	
F_2^{Pb}/F_2^C NMC [15] 15	
F_2^{Sn}/F_2^C NMC [16] 145	5
$\sigma_{DY}^C / \sigma_{DY}^D$ E772 [17] 9	
$\sigma_{DY}^{Ca}/\sigma_{DY}^{D}$ E772 [17] 9	
$\sigma_{DY}^{Fe}/\sigma_{DY}^{D}$ E772 [17] 9	
$\sigma_{DY}^W/\sigma_{DY}^D$ E772 [17] 9	
Total 420)

Very small (negligible) gluon shadowing

- Only NLO analysis is directly sensitive to gluon distributions in the nucleus
- So far only one such analysis with extremely interesting results

- **Problematic:** for initial state shadowing models $C_A/C_F = 2.25$
- Natural: for final state resummed power corrections

- Modifications to v + A Scattering
- No theory for the shadowing in $\nu + A$
- 3σ deviation from the Standard Model (Now 1.8 σ)

 $\sin^2 \theta_W(SM) = 0.2227 \pm 0.0004$ $\sin^2 \theta_W(NuTeV) = 0.2277 \pm 0.0013 \pm 0.0009 \pm \dots$

NuTeV experiment

G.P.Zeller et al., Phys.Rev.Lett 88 (2002)

(exchange W^{\pm}, Z^0)

• MINOS up and running - a case for MINERvA

Cross sections matter

$$\frac{d\sigma^{v,\bar{v}}_{cc}}{dxdy} \propto \frac{1}{\left(\sin^2\theta_w\right)^2} \left[\frac{y^2}{2} 2x F_1^{w^{\pm}}(x,Q^2) + \left(1 - y - \frac{m_N xy}{2E}\right) F_2^{w^{\pm}}(x,Q^2) \pm \left(y - \frac{y^2}{2}\right) x F_3^{w^{\pm}}(x,Q^2)\right]$$
Axial and vector part (weak current) Similarly for the neutral current

Results: $F_2(x,Q^2)$ and $xF_3(x,Q^2)$

$$F_{1,3}^{(vW^+)}(x_B, Q^2) = \{2\} A \left(\sum_{D,U} |V_{DU}|^2 \phi_D(x_B + x_{\xi^2} + x_M) \pm \sum_{\overline{U},\overline{D}} |V_{\overline{U}\overline{D}}|^2 \phi_{\overline{U}}(x_B + x_{\xi^2} + x_M) \right)$$

• Physics: generation of a dynamical parton mass in the nuclear field

$$x_{B} \rightarrow x_{B} \left(1 + \frac{\xi^{2} (A^{1/3} - 1)}{Q^{2}} + \frac{M^{2}}{Q^{2}} \right) = x_{B} \left(1 + \frac{m_{dyn}^{2} + M^{2}}{Q^{2}} \right)$$

April 27 - May 1, 2005

Power law deviation between data and the theory

- Focus on the small Q² and x < 0.1 region
- Look relative to MRST 2001. They do not including the nuclear effect in PDFs

J.W.Qiu, I.V., Phys.Lett.B 587 (2004)

Suppression is 12% and 6% in the two lowest x bins at $Q^2 = 1.3 \text{ GeV}^2$

QCD Sum Rules

$$S_{GLS} = \int_{0}^{1} dx \, \frac{1}{2x} \Big(x F_{3}^{\nu N}(x, Q^{2}) + x F_{3}^{\overline{\nu} N}(x, Q^{2}) \Big)$$
$$= \frac{3}{(1 - \Delta_{GLS})}$$

D.Gross and C.Llewellyn Smith, Nucl.Phys. B 14 (1969)

• To Lowest Order (LO) $S_{GLS} = 3, \Delta_{GLS} = 0$

• At Next-to-Leading Order $\Delta_{GLS} = \alpha_s / \pi$

 Leading twist shadowing does not change the sum rules (only redistributes) momentum)

Neutrino data is clearly indicative of the high twist nature of nuclear shadowing

Summary of the Dynamical Power Corrections

T.Goldman et al., in preparation

- Shadowing in the perturbative regime is calculable based on the uncertainty principle and energy conservation
- Soft final state interactions generate dynamical parton mass $m^2_{dyn} = \xi^2 A^{1/3}$
- If dictated by the uncertainty principle $x_B < 0.1$ the energy of the struck parton should be larger

$$x_B \rightarrow x_B \left(1 + \frac{m_{dyn}^2}{Q^2} \right)$$

• Clearly a high twist and process dependent effect (final state)

$$S_g > S_{u-sea} > S_{u-val}$$

April 27 - May 1, 2005

p+A Yields and Correlations

J.W.Qiu, I.V., hep-ph/0405068

Comparison to the data:

I.Arsene et al., Phys.Rev.Lett. 93 (2004)

Suppression increases with rapidity and centrality

Suppression disappears at high p_T

Data supports this type of power behavior

April 27 - May 1, 2005

Conclusions

- "Shadowing" results from the coherent final state parton scattering with several nucleons (dynamical parton mass, refraction index of nuclear matter for q, g)
- The effect is purely quantum. It enters as a shift of the quantum phase and suppresses the SF exhibits power behavior, i.e. strong Q² dependence
- Predicts new high twist contribution to FL. Predicts the difference in sea and valence quark shadowing in neutrino-A reactions and the modification of the QCD sum rules
- For p+A reactions results can be generalized to dynamical gluon shadowing. Suppression of the hadron yields and correlations

• Even if one neglects $\phi_c(x,Q^2)$, $\phi_{\overline{c}}(x,Q^2)$ mass effects show up due to the charge exchange

J.W.Qiu, I.V., Phys.Lett.B 587 (2004)

• Along the way we will develop techniques that may be useful in the discussion of charm production at RHIC

|V| - the CKM matrix elements U = (u, c, t), D = (d, s, b)

$$F_{L}^{(\nu W^{+})}(x_{B},Q^{2}) = \sum_{D,U} |V_{DU}|^{2} \frac{M_{U}^{2}}{Q^{2}} \phi_{D}(x_{B} + x_{M_{U}}) + \sum_{\bar{U},\bar{D}} |V_{\bar{U}\bar{D}}|^{2} \frac{M_{\bar{D}}^{2}}{Q^{2}} \phi_{\bar{U}}(x_{B} + x_{M_{\bar{D}}})$$

$$F_{L}^{(\bar{\nu}W^{-})}(x_{B},Q^{2}) = \sum_{U,D} |V_{UD}|^{2} \frac{M_{D}^{2}}{Q^{2}} \phi_{U}(x_{B} + x_{M_{D}}) + \sum_{\bar{D},\bar{U}} |V_{\bar{D}\bar{U}}|^{2} \frac{M_{\bar{U}}^{2}}{Q^{2}} \phi_{\bar{D}}(x_{B} + x_{M_{\bar{U}}})$$

April 27 - May 1, 2005

Mass and Nuclear Enhanced Power Corrections

Special propagator structure:

$$(\gamma \cdot \tilde{p} + M) \gamma_{\perp} (\gamma \cdot \tilde{p} + M) = 0$$
$$(\gamma \cdot p) \gamma_{\perp} (\gamma \cdot p) = 0$$

- Equations of motion nuclear enhanced power corrections and mass corrections commute
- Demonstrated that the corrections can be resummed
- Physics interpretation generation of a dynamical parton mass in the nuclear chromomagnetic field

$$x_B \rightarrow x_B \left(1 + \frac{\xi^2 (A^{1/3} - 1)}{Q^2} + \frac{M^2}{Q^2} \right) = x_B \left(1 + \frac{m_{dyn}^2 + M^2}{Q^2} \right)$$

April 27 - May 1, 2005

