Measurements of the Separated Structure Functions F_1 and F_L

Cynthia Keppel Hampton University / Jefferson Lab

Deep Inelastic Scattering 2005 Madison, WI

Inclusive
$$e + p \rightarrow e + X$$

Scattering
 $\frac{d\sigma}{d\Omega dE'} = \Gamma(\sigma_T + \varepsilon \sigma_L)$

Where: Γ = flux of transversely polarized virtual photons ϵ = relative longitudinal polarization

Alternatively:

$$\frac{d\sigma}{d\Omega dE'} = \sigma_{mott} (F_2 / \nu + 2F_1 \tan^2(\theta / 2) / M)$$

$$R = \frac{\sigma_L}{\sigma_T} = \frac{F_L}{2xF_1}$$

$$F_L = (1 + \frac{4M^2 x^2}{Q^2})F_2 - 2xF_1$$

$$F_L = (1 + \frac{M^2 x^2}{Q^2})F_2 - 2xF_1$$

Experimental Status of Unpolarized SF

- F_2 well measured responsible for much understanding of proton struct
- Nonetheless, large x, low Q² region is sparse
- R (F_L), is not at all so well measured (especially large x, low Q²)
- Situation is worse for nuclei

This is the Jefferson Lab Regime

Here, L/T Separations are Crucial....

1) F_2 is sometimes referred to as the "*transverse*" SF.

• In fact $F_2 \sim \sigma_L + \sigma_T$

- F₂ can't be obtained precisely independent of R and L/T separations
 - Except at $\varepsilon = 1$ or Q² large, F_2 extracted from cross sections requires knowledge of R.
- Behaviour of F₂ at low Q² is not actually well determined (F₂→ 0 at Q²→ 0).
- 4) R must be small for $Q^2 < 1$ (R = 0 at the photon point, $Q^2 = 0$).

This has not yet been observed in the data - in fact, quite the

Just an example....

 $A^{+}W^{2} = 4$ GeV^2 and Q2 < 1 GeV^2 , F_2 will vary b 15% depending on the choice of R = 0 or R =0.2. At higher Q2, this can be as much as

Challenges / Issues / Physics at Low Q², Large x

- NEED L/T separations to extract inclusive Structure Functions F₁ F_L, and F₂
- Low Q² Behavior
- Large x Parton Distribution Function Uncertainties
- Structure Function Moments (Compare to Lattice QCD), Sum Rules
- Enter the Resonance Region
- Parton-Hadron Duality

Nuclear Dependence Is there an EMC effect in R?

A Program of L/T Separated Structure Function Measurements in Hall C at Jefferson Lab

- E94-110: Hydrogen Resonance Region
- E99-118: Low x, Q²
 Dependence
- E00-002: Low Q²
 Deep Inelastic H, D
- E04-001: Nuclear Dependence, Neutr Modeling
- E02-109: Deuterium Resonance Region, Neutron Structure Function Moments

E94-110: (Example) Cross Sections

Rosenbluth Separations (170 +!)

Point-to-Point Systematic Uncertainties for E94-110

Quantity	Uncertainty	$\delta_{\sigma}(\%)$
Beam energy	$\sim 5 imes 10^{-4}$	0.30
Scattered <i>e</i> ⁻ energy	$\sim 5 imes 10^{-4}$	0.25
Scattering e^- angle	$\sim 0.2 \text{ mrad}$	0.26
Target density (relative)	0.05%	0.05
Beam charge (relative)	0.1%	0.1
Dead Time Correction	0.2%	0.2
Detector Efficiency	0.55%	0.55
e + /e – background	0.2%	0.2
Acceptance	0.7%	0.7
Model Dependence	0.6%	0.6
Radiative Correction (ϵ)	1.05%	1.05
Total point-to-point		1.6

Total estimated point-to-point systematic uncertainty for E94-110 is 1.6%.

Systematic Uncertainties

• Spread of points about the linear fits is fairly Gaussian with $\sigma \sim 1.6$ %

This is very consistent with the estimated pt-pt uncertainties.

...and indicative of minimal two photon exchange corrections

R on the proton today...getting better

Note: R still not small at low Q2 expected

Ratio R_H / R_D

Experimental Status of L/T Separated Structure Alekhin NNLO Functions: 2xF₁

MRST NNLO MRST NNLO with Barbieri Target Mass Corrections

Smooth transition from DIS (solid squares) to resonance region

 Resonances oscillate about perturbative curves (quark-hadron duality in transverse channel) - all Q²
 Target mass corrections large and important

Experimental Status of L/T Separated Structure Alekhin NNLO Functions: FL

MRST NNLO MRST NNLO with Barbieri Target Mass Corrections

Smooth transition from DIS (solid squares) to resonance region

Resonances oscillate
 about perturbative curves
 (longitudinal duality) - all
 Q²

Target mass corrections
 large and important
 Fun side note...what's

The new data buys us, in particular: • Ability to extract structure function

- moments
- -Evaluate higher twist
- -Compare to lattice QCD
- $-F_L$ yields G(x)
- Unique access to large x
 - -Large pdf uncertainties
 - -Duality a big help

Moments of the Structure Function $M_n(Q^2) = \int dx \, x^{n-2} F(x,Q^2)$ If n = 2, this is the Bloom-Gilman duality integral! Operator Product Expansion $M_n(Q^2) = \sum_{k=1}^{\infty} (n M_0^2 / Q^2)^{k-1} B_{nk}(Q^2)$ ^{k=1} higher twist logarithmic (pQCD)

 Duality is described in the Operator Product Expansion as higher twist effects being small o cancelling DeRujula, Georgi, Politzer (1977)

Need data covering *wide range* in ﷺ[™] x, at fixed Q2

 F_2

Large x increasingly important at large n

+ elastics.....

n = 2 Cornwall-Norton Moments

Cornwall-Norton Moments

 F_2 , F_1 in excellent agreement with NNI + TM above $Q^2 = 2$ GeV²

No (or canceling) higher twists

Yet, dominated by la x and resonance regi

Remove known HT bit novel), the elastic and there is no more down to $Q^2 = 0.5$ Ge

The case looks diffe for F₁ (data or curve

Momentum Sum Rule

Cornwall-Norton Moments

Parton Distribution Functions – not well known at large x

Can the Jlab data help reduce the uncertainties?

Can the Jlab (SLAC) data help reduce th uncertainties? – another approach

Current cut is $W^2 =$ 10 GeV, $Q^2 = 10$ GeV²

Can the Jlab (SLAC) data help reduce th uncertainties? – another approach

Uncertainties associated with higher twist, large x evolution

But, it looks mayb useful even if the "data uncertainty" were increased 20

May help LHC.... A work in progres:

Summary

- Precision measurements of R = σ_L/σ_T , and therefore separated structure functions, now available from Jefferson Lab
- Significant longitudinal strength and structure at large x
- Dictates L/T separations necessary even for F_2
- Quark-hadron duality observed in separated structure functions independently
- R on proton differs from R on deuterium
- New data allows for moment extractions very minimal higher twist observed
- F_L moments probe the glue
- Perhaps we use this large x data to better constrain large x pdfs
- More to come:
 - Nuclei
 - Lower Q²