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4 INFN Sezione di Torino

5 Dipartimento di Fisica Teorica, Università di Torino
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Motivation

• The problem: parametrization of parton distributions from data.

• Shortcomings of standard approaches to pdf global fits:

1. A priori bias introduced by the choice of a fixed functional form.

2. Problems with estimation of uncertainties:

– The pdf parametrization affects (in an unknown way) the

representation of uncertainties.

– Incompatible data, non gaussian errors:

(arbitrary) Tolerance criteria.

3. Correct implementation of error propagation:

Some methods use (not trustable) linear approximations.

• Very relevant problem: In parallel with the determination of best-fit PDFs an

equally important front in global analysis has been opened ... the development of

quantifiable uncertainties on the PDFs ... Much progress has been made, many useful

results have been obtained, but there are no unambiguous conclusions, W.K. Tung,

hep-ph/0410139



What is the problem?

• For a single quantity → 1 sigma errors

• For a pair of numbers → 1 sigma ellipse

• For a function → We need the probability measure P [f ] in the space of

functions f(x)

Expectation values → Functional integrals

〈F [f(x)]〉 =

∫
Df P [f(x)]︸ ︷︷ ︸
Integ. meas.

F [f(x)]︸ ︷︷ ︸
Observable

The problem: Determine an infinite-dimensional object (a function) from

finite set of data points.

→ Mathematically ill-posed problem.



What is the problem?

Parton distributions → DIS structure functions

F (x,Q2) =
∑

f

Cf
(
αs
(
Q2
))
⊗ qf (Q2) + Cg

(
αs
(
Q2
))
⊗ gf (Q2)

• Trivial complication: disentangle quark flavors and gluon, evolution,

deconvolution.

• Serious complication: determine error on pdfs f(x), f = qi, g

A (marginally) simpler problem: Determine the structure function F (x,Q2)

with associated errors.

The NNPDF program: proceed in two steps:

1. Determination of structure functions: Completed

2. Determination of parton distributions: Preliminary results



Step 1:

Determination of Structure Functions
(Completed)



The NNPDF Collaboration approach:

Use neural networks as unbiased universal interpolants to construct a

probability measure in the space of structure functions P
[
F (x,Q2)

]
from

experimental data.

General strategy:

1. Monte Carlo sampling of data (Generation of replicas of experimental

data):

Faithful representation of uncertainties

2. Neural network training over Monte Carlo replicas:

Unbiased parametrization.

The probability measure P [F ] contains all information from experimental data

(central values, errors, correlations) with the only assumption of smoothness.

Expectation values → Functional integrals over probability measure

〈
F
[
F (x,Q2)

]〉
=

∫
DF P [F (x)]︸ ︷︷ ︸

Int. meas

F [F (x)]︸ ︷︷ ︸
Observable

=
1

Nrep

Nrep∑

k=1

F
(
F (net)(k)(x,Q2)

)



1.- Monte Carlo sampling of experimental data

Generate Nrep Monte Carlo sets of ’pseudo-data’, replicas of the original Ndat

data points F
(exp)
i

F
(art)(k)
i k = 1, . . . , Nrep, i = 1, . . . , Ndat

using full information on experimental errors and correlations:

F
(art)(k)
i =

(
1 + r

(k)
N σN

)

F (exp)

i + rsi σ
stat
i +

Nsys∑

l=1

rl,(k)σsys,li




r(k): Gaussian random numbers.

Size of set of replicas
{
F (art)(k)

}
large enough to reproduce central values,

errors and correlations of exp. data.

Similar to the Bayesian Monte Carlo approach (Giele ,Kosower, Keller 01).



2.- Neural network replica training

Neural network: highly nonlinear mapping between input and output patterns,

defined by its parameters (weights ω
(l)
ij and thresholds θ

(l)
i )

Neural networks are suitable to parametrize PDFs as

• Are the most unbiased prior.

• Robust, unbiased universal approximants

• Interpolate between data points with only assumption → smoothness.



2.- Neural network replica training

Perceptrons: feed-forward multilayer neural networks

ξ
(l)
i = g



nl−1∑

j=1

ω
(l−1)
ij ξ

(l−1)
j − θ(l)

i


 g(x) =

1

1 + e−βx

Choose redundant architecture → No smoothing bias

Neural network training (PDF fitting):

Minimization of χ2 with experimental covariance matrix.

χ2(k)
=

1

Ndat

Ndat∑

i,j=1

(
F

(art)(k)
i − F (net)(k)

i

)
cov−1

ij

(
F

(art)(k)
j − F (net)(k)

j

)

Training method → Genetic Algorithms

GA → effective to find the global minimum, but slow convergence rate



Set of trained nets
{
F (net)(k)(x,Q2)

}
≡ Probability measure P

[
F (x,Q2)

]

→ Compute observables with errors and correlations from weighted averages.

Ex.1 : Average and error of structure function for arbitrary (x,Q2):

〈
F (x,Q2)

〉
=

1

Nrep

Nrep∑

k=1

F (net)(k)(x,Q2)

σ(x,Q2) =

√
〈F (x,Q2)2〉 − 〈F (x,Q2)〉2

No need of linear approximations in error propagation.

Ex.2 : Correlations between (arbitrary) pairs of points:

〈
F (x1, Q

2
1)F (x2, Q

2
2)
〉

=
1

Nrep

Nrep∑

k=1

F (net)(k)(x1, Q
2
1)F (net)(k)(x2, Q

2
2)



Summary of the NNPDF strategy



Previous work

• S. Forte, L. Garrido, J. I. Latorre and A. Piccione, “Neural network

parametrization of deep-inelastic structure functions,” JHEP 0205 (2002)

062 [arXiv:hep-ph/0204232].

→ Determination of F p2 , F
d
2 , F

NS
2 from NMC and BCDMS data

• L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione and J. Rojo [NNPDF

Collaboration], “Unbiased determination of the proton structure function

F p2 with faithful uncertainty estimation” , arXiv:hep-ph/0501067.

→ Determination of F p2 from all available data (including HERA)

→ Incorporates data from 13 experiments in very different kinematical regions.

Source code, driver program and graphical web interface for F2 plots and

numerical computations available

http://sophia.ecm.ub.es/f2neural



Comparing old and new fits of F p2 (x,Q2)

Features:

• Compatibility old & new

• Extrapolation

• Faithful uncertainty est.



Step 2

Determination of Parton Distributions
(preliminary results)



The neural network approach to pdf fitting

Same strategy as with structure functions + Altarelli-Parisi evolution

1. Monte Carlo sampling of structure functions data → Faithful estimation

of uncertainties

2. Parametrize parton distributions with neural networks → Unbiased

parametrization.

3. Evolution of parton distributions to experimental data scale and training

over Monte Carlo replica sample.

The probability measure P [q] contains all information from experimental data

(central values, errors, correlations) with the only assumption of smoothness.



The neural network approach to pdf fitting

Expectation values → Functional integrals over probability measure

〈F [q(x)]〉 =

∫
DqF [q(x)]P [q(x)] =

1

Nrep

Nrep∑

k=1

F
(
q(net)(k)(x)

)

Monte Carlo sampling → Compute correlations between pairs of different

parton distributions at different points:

Ex. : Correlation of quark pdf qf (x) and gluon pdf g(x)

〈qf (x1)g(x2)〉 =
1

Nrep

Nrep∑

k=1

q
(net)(k)
f (x1, Q

2
0)g(net)(k)(x2, Q

2
0)

→ Extremely important for computation of physical processes

Example → Correlation between u and d quark pdfs.



Strategies in PDF global fits

The standard approach: The NNPDF approach:

1.- PDFs parametrized by functional

forms q(x,Q2
0) = xα(1− x)βP (x)

1.- PDFs q(x,Q2
0) parametrized by

neural networks. → no bias due to

functional form.

2.- Uncertainties: representation as

ranges in parameters, estimation with

different methods (offset, Hessian, La-

grange multiplier,..)

2.- Monte Carlo sampling of experi-

mental data → Faithful representa-

tion of errors and correlations.

3.- Error propagation (sometimes) in

linearized approximation, depends on

parametrization.

3.- Monte Carlo sampling of exper-

imental data → Exact error propa-

gation.



Parton distribution evolution

PDFs parametrized by a neural network → Mellin inversion of N-space

evolution kernel (no complex neural networks):

q(N,Q2) = q(N,Q2
0)Γ

(
N,αs

(
Q2
)
, αs

(
Q2

0

))

Γ
(
x, αs

(
Q2
)
, αs

(
Q2

0

))
≡ 1

2πi

∫ c+i∞

c−i∞
x−NΓ

(
N,αs

(
Q2
)
, αs

(
Q2

0

))

Γ(x) is a distribution, diverges at x = 1.

Regulating the Γ(x) distribution → PDF evolution equation:

q(x,Q2) = q(x,Q2
0)

∫ 1

x

Γ(y)dy +

∫ 1

x

dy

y
Γ(y)

(
q

(
x

y
,Q2

0

)
− yq(x,Q2

0)

)

Note: the neural network q(x,Q2
0) must learn a convolution.



Details of PDF evolution (I)

• At higher orders → Wilson coefficients C(N,αs
(
Q2
)
) through a modified

evolution factor

Γ̃
(
x, αs

(
Q2
)
, αs

(
Q2

0

))
=

1

2πi

∫ c+i∞

c−i∞
x−NC(N,αs

(
Q2
)
)Γ (N)

• Mellin transform inversion of evolution factor Γ(N) with Fixed Talbot

algorithm (very efficient).

• Evolution formalism benchmarked against the Les Houches parton

distribution evolution benchmark results, (G. Salam, A. Vogt,

hep-ph/0204316 )



Details of PDF evolution (II)

• During pdf fitting (neural network training) only Γ(x) is required

Compute Γ(x) and its integral

γ(x) =

∫ x

0

dy Γ(y)

before the fit (hard numerical task) and interpolate them.

• Interpolation of Γ(x) non trivial (Γ(x) is a distribution, diverges at x = 1)

→ Benchmark evolution with interpolated Γ(x).

• Much faster evolution with interpolated Γ(x).

• Resulting formalism: Fast and efficient parton evolution.



The nonsinglet parton distribution

First application of the method:

Determination of the nonsinglet parton distribution qNS(x,Q2
0) from the NS

structure function FNS2 (x,Q2).

At Leading Order:

FNS2 (x,Q2) ≡ 2
(
F p2 − F d2

)
(x,Q2) =

x

6

(
u+ ū− d− d̄

)
(x,Q2) ≡ xqNS(x,Q2)

Evolution equations:

qNS(x,Q2) = qNS(x,Q2
0) +

∫ 1

x

dy

y
Γ(y)

(
qNS

(
x

y
,Q2

0

)
− yqNS(x,Q2

0)

)

−q(x,Q2
0)

∫ x

0

qNS(x,Q2
0)

where qNS(x,Q2
0) is parametrized by a neural network.



The nonsinglet pdf at small x (I)

Historical reminder: F2(x,Q2) (singlet) before and after HERA data.a
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→ Only experimental data could discriminate the correct low x behavior.

aThanks to C. Gwenlan for the plots.



The nonsinglet pdf at small x (II)

Does the nonsinglet parton distribution qNS(x) grow at low x?

• Global fits of parton distributions show a rising qNS(x) at small x.

• Theoretical arguments appear to point in this direction:

1. Regge theory: qNS(x) ∼ x−0.5 (A2 Reggeon)

2. Low−x resummations: Ex. qNS(x) ∼ x−ω+/2, ω+ = 0.38, B. Ermolaev et al.

ph/0503019

However, experimental data for FNS2 stops at x ∼ 10−2 and has large errors

Is the small x growth implied by current data?



Details of the fit

• Experimental data: FNS2 (x,Q2) from the NMC and BCDMS

Collaborations: 347 points.

• Kinematical cuts: Q2 ≥ 9 GeV2, W 2 ≥ 6.25 GeV2

• Starting evolution scale: Q2
0 = 2 GeV2

• Only assumption → qNS(x = 1, Q2
0) = 0.

• Perturbative order: NLO

• Neural network architecture: 2-2-2-1.

• Strong coupling αs
(
Q2
)

determined from world average value:

αs
(
M2
Z

)
= 0.118



Results: qNS(x,Q2
0) NNPDF at NLO

Very large uncertainties at small x:

The growth of qNS(x) is allowed but not implied by (available) experimental data.



Results: xqNS(x,Q2
0) NNPDF at NLO

Very large uncertainties at small x:

Other xqNS(x) within the NNPDF fit error band.



Summary

• Unbiased determination of structure functions with faithful estimation of

uncertainties.

• Successful implementation of neural parton fitting: Determination of

nonsinglet parton distribution at NLO with fully correlated uncertainties

from FNS2 (x,Q2).

• The uncertainties at small x are very large: to settle the issue of the low x

behavior of the nonsinglet we need additional experimental data.

• Ideal scenario: A run with deuterons at HERA II.

See discussions of the HERA-LHC workshop,

http://www.desy.de/˜ heralhc



Outlook

• Construct full set of NNPDF parton distributions from all available data.

• Estimate impact of theoretical uncertainties.

• Assess impact of uncertainties of PDFs for relevant observables at LHC.

• Make formalism compatible with standard interface: LHAIPDFv4:

NNPDF partons available for use in Monte Carlo generators.


