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Parton Uncertainties – Experiment – recently a lot of work. Number of approaches.

Hessian (Error Matrix) approach.

χ2 − χ2
min ≡ ∆χ2 =

∑

i,j

Hij(ai − a
(0)
i )(aj − a

(0)
j )

Simple method problematic due to extreme variations in ∆χ2 in different directions
in parameter space – particularly with more parameters (more data). → numerical
instability. Improved by CTEQ. Now used in slightly weaker form by MRST and ZEUS.

Can also look at uncertainty on a given physical quantity using Lagrange Multiplier
method, first suggested by CTEQ and concentrated on by MRST. Minimize

Ψ(λ, a) = χ2
global(a) + λF (a).

Gives best fits for particular values of quantity F (a) without relying on Gaussian
approx for χ2.
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In full global fit art in choosing “correct” ∆χ2 given complication of errors. Ideally
∆χ2 = 1, but unrealistic.
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Many approaches use ∆χ2 ∼ 1. CTEQ choose ∆χ2 ∼ 100 for 90% confidence limit,
i.e. ∼ 40 for 1− σ error. MRST choose ∆χ2 ∼ 20 for 1− σ error.
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LHC Physics
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The kinematic range for
particle production at the LHC
is shown.

Smallish x ∼ 0.001 − 0.01
parton distributions therefore
vital for understanding the
standard production processes
at the LHC.

However, even smaller (and
higher) x required when one
moves away from zero rapidity,
e.g. when calculating total
cross-section.
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Uncertainty on MRST ū and d̄ distributions, along with CTEQ6. Central rapidity
x = 0.006 is ideal for MRST uncertainty in W,Z (Higgs?) at the LHC.
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Current best (MRST) estimate

δσNLO
W,Z (expt pdf) = ±2%

but note that there is a greater uncertainty in the NLO prediction, due to possible
problems at small x in the global fit to DIS data.

This is because the large rapidity W and Z total cross-sections sample very small x

σ(W+)/σ(W−) is gold-plated

R± =
σ(W+)

σ(W−)
'
u(x1)d̄(x2)

d(x1)ū(x2)
'
u(x1)

d(x1)

since sea is u, d symmetric at small x, and using MRST2001E

δR±(expt. pdf) = ±1.4%

Assuming all other uncertainties cancel, this is probably the most accurate SM
cross-section test at LHC.
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Could σ(W ) or σ(Z) be used to
calibrate other cross-sections, e.g.
σ(WH), σ(Z ′)?

σ(WH) more precisely predicted
because it samples quark pdfs at
higher x, and scale, than σ(W ).

However, ratio shows no improvement
in uncertainty, and can be worse.

Partons in different regions of x
are often anticorrelated rather than
correlated, partially due to sum rules.
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Similarly no obvious advantage in
using σ(tt̄) as a calibration SM
cross-section, except maybe for very
particular, and rather large, MH.

However, a light (SM or MSSM)
Higgs dominantly produced via gg →
H and the cross-section has small pdf
uncertainty because g(x) at small x is
well constrained by HERA DIS data.

Current best (MRST) estimate, for
MH = 120 GeV: δσNLO

H (expt pdf) =
±2−3% with less sensitivity to small
x than σ(W ).

Much smaller than the uncertainty
from higher-order corrections, for
example, Catani et al,

δσNNLL
H (scale variation) = ±8%
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High-ET Jets
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In constrast, the error on predictions
for very high-ET jets at the
LHC is dominated by the parton
uncertainties.

Sensitive to relatively poorly known
high-x gluon.
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Different approaches to fits generally lead to similar uncertainty for measured
quantities, but can lead to different central values. Must consider effect of assumptions
made during fit and correctness of NLO QCD.
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Many can be as important as experimental errors on data used (or more so).
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Results from LHC/LP Study Working Group (Bourilkov).

Table 1: Cross-sections for Drell-Yan pairs (e+e−) with PYTHIA 6.206, rapidity < 2.5.
The errors shown are the PDF uncertainties.

PDF set Comment xsec [pb] PDF uncertainty %
81 < M < 101 GeV

CTEQ6 LHAPDF 1065 ± 46 4.4
MRST2002 LHAPDF 1091 ± ... 3
Fermi2002 LHAPDF 853 ± 18 2.2

Comparison of σW ·Blν for MRST2002 and Alekhin partons.

PDF set Comment xsec [nb] PDF uncertainty
Alekhin Tevatron 2.73 ± 0.05 (tot)
MRST2002 Tevatron 2.59 ± 0.03 (expt)
CTEQ6 Tevatron 2.54 ± 0.10 (expt)
Alekhin LHC 215 ± 6 (tot)
MRST2002 LHC 204 ± 4 (expt)
CTEQ6 LHC 205 ± 8 (expt)

In both cases differences (mainly) due to detailed constraint (by data) on quark
decomposition.

DIS05 Partons 10



Problems in the fit.
Gluon LO , NLO and NNLO
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Variations from different approaches
partially due to inadequacy of theory.

Failings of NLO QCD indicated by
some areas where fit quality could be
improved.

Good fit to HERA data, but some
problems at highest Q2 at moderate
x, i.e. in dF2/d lnQ

2.

Data require gluon to be negative at
low Q2, e.g. MRST Q2

0 = 1GeV2.
Needed by all data (e.g. Tevatron
jets) not just low Q2 low x data.

xg(x,Q2) going from LO → NLO →
NNLO.
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Other groups find similar problems
with gluon at low x.

CTEQ have valence-like input gluon
at Q2

0 = 1.69GeV2 which would like
(at least a little) to be negative.
(Blue line – negative gluon allowed,
black line – positive definite gluon.)
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FL LO , NLO and NNLO
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Also instability in physical, gluon
dominated, quantity FL(x,Q

2) going
from LO → NLO → NNLO.

Gluon at NLO → FL(x,Q
2)

dangerously small at smallest x,Q2.

Note very large effect of exact NNLO
coefficient function.

Possible sign of required ln(1/x)
corrections.
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MRST 2002 and D0 jet data, αS(MZ)=0.1197 , χ2= 85/82 pts
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As an example of the effect of
assumptions, MRST found only a
reasonable fit to jet data, but need
to use the large systematic errors.

Better for CTEQ6 due to different
cuts on other data, and different
type of high-x parameterization.
Usually worse for other partons
(jets not in fits). General tension
between HERA and NMC data
and jets.
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MRST 2001 and CDF1B jet data
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Comparison to CDF1B jet data.

Can explicitly see data move
relative to theory using correlated
systematic errors.
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Illustration of problem with jets.

Using simple spectator counting
rules, at high x,

qV (x) ∼ (1−x)3, g(x) ∼ (1−x)5

Clearly not true for CTEQ6.1M
partons which give good jet fit.

Gluon is hardest as x→ 1.

MRST parameterizations don’t
allow such a hard gluon. Fits not
as good as one would ideally like.

Worse at NNLO since high-x
quarks smaller → even bigger
gluon.
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New approach to high-x gluon.

In DIS scheme F2(x,Q
2) ≡

∑Nf

i e2i xqi(x,Q
2).

Under change of scheme from MS to DIS schemes we have:

qDIS(x) = qMS + CMS
2,q ⊗ qMS + CMS

2,g ⊗ gMS,

gDIS = gMS − CMS
2,q ⊗ qMS − CMS

2,g ⊗ gMS.

Designed to maintain 100% momentum.

Scheme transformation should dominate high-x gluon if valence quarks naturally
biggest at high x.

If gMS ∼ (1 − x)5, then becomes negative in DIS scheme. Or if gDIS ∼ (1 − x)5,
then transformation determines very high-x limit.
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DIS scheme is certainly more physical for
quarks. MS scheme not really physical
at all.

Assume high-x gluon is smaller than
high-x quarks in DIS scheme. Therefore
in MS scheme

gMS = gDIS + CMS
2,q ⊗ qMS,

so high-x gluon determined from quarks.

Works extremely well. χ2 for jets 154→
116.

Total ∆χ2 = −26.

DIS scheme gluon more natural at high
x.
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Works even better at NNLO.

C
MS,(2)
2,q ⊗ qMS positive and significant
at very high x→ high-x gluon even more
determined from quarks.

Now χ2 for jets 164→ 117.

Total ∆χ2 = −79.

DIS scheme gluon again more natural
at high x.

In MS scheme high-x gluon unphysical
and determined entirely by quarks?

DIS05 Partons 19



MRST 2004 NNLO DIS-type and D0 jet data, αS(MZ)=0.1167 , χ2= 64/82 pts
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Comparison to D0 jet data for
scheme change-inspired partons.

Shape much better.

DIS05 Partons 20



MRST NNLO 2004 DIS-type and CDF1B jet data
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Comparison to CDF1B jet data for
scheme change-inspired partons.

Shape now correct. Normalization
shift of theory relative to data.

6% normalization difference between
CDF and D0.

DIS05 Partons 21



Weak corrections

Calculation by Moretti, Nolten, Ross, goes like (1− 2
3CF

αW
π

log2(E2
T/M

2
W )).

Dominated by quark-(anti)quark processes.

They suggest ≈ 12% correction at ET = 450GeV. Question validity of recent partons.
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Not quite as big in reality. Use LO
partons with big high-x quarks, very
small gluon→ high-ET cross-section
almost all quarks.

Not the case with most recent
partons (look at x = 0.5).

qq qg gg matrix elements in ratio
5 6 30.

Even at highest ET gluon contributes
∼ 30%.

Estimate max suppression reduced to
≈ 8%.
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MRST NNLO 2004 DIS type and CDF1B jet data
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Phenomenological impact not huge.

Movement of both CDF and D0 data
relatively small.

Total χ2 goes from 117/113 to
131/113 (without refitting).

Significant but not a disaster by any
means.

More important at higher ET .

But positive real corrections to be
added (depend on jet definitions).
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Change in fit to D0 data.

MRST 2004 NNLO DIS-type and D0 jet data, αS(MZ)=0.1167 , χ2= 64/82 pts
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QED Effects.
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New study by MRST.

Effect on quark distributions is
entirely negligible at small x
where gluon contribution dominates
DGLAP evolution.

At large x, photon radiation from
quarks leads to faster evolution,
roughly equivalent to a slight shift
in αS : ∆αS(M

2
Z) ' +0.0003

Overall QED effects much smaller
than many sources of uncertainty.
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However, QED effects to lead to small isospin
violation.

upV (x) quarks radiate more photons than dnV (x)
quarks.

To rough approximation

γ(x,Q2) =
∑

j

e2j
α

2π
ln(Q2/m2

q)

∫ 1

x

dy

y
Pγq(y)qj(

x

y
,Q2).

So more photon momentum in proton than neutron due to high-x up quarks radiating
more than high-x down quarks.

Momentum conservation → upV (x) < dnV (x) at high .

Hence, [δUv] < 0 as required by NuTeV anomaly.

Estimates for mu = 6 MeV and md = 10 MeV imply similar to isospin violation
observed by best fit! Reduces NuTeV anomaly to about 1/2.
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Model supported by wide angle photon scattering, i.e. ep → eγX where final state
electron and photon have equal and opposite large transverse momentum.

ZEUS has recently published a measurement of this cross-section (xγ ≈ 0.005):

σ(ep→ eγX) = 5.64 ± 0.58 (stat.)
+0.47

−0.72
(syst.) pb.

Neither PYTHIA nor HERWIG can explain the observed rate – underestimating the
cross-section by factors of 2 and 8 respectively.

Using the proton’s photon parton distribution we find

σ(ep→ eγX) = 6.2 ± 1.2 pb.

Using constituent quark masses our prediction nearly halves.
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NNLO

Splitting functions now complete. (Moch, Vermaseren and Vogt). Extremely similar
to average of best estimates → no real change in NNLO partons. Improve quality of
fit very slightly (MRST), and reduces αS → 0.116.

To do absolutely correct NNLO fit we need not only exact NNLO splitting functions.

Also require rigorous heavy quark thresholds (partons discontinuous at NNLO - see
Heavy Flavours talk), NNLO Drell-Yan cross-sections, and a complete treatment of
uncertainties. All in hand.

Essentially full NNLO determination of partons very soon.

Only NNLO jet cross-sections missing. Is this important?
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Probably not!

NLO corrections themselves not large, except at high rapidities.

At central rapidities ≤ 10%. Similar to correlated errors.
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Also good NNLO estimates Kidonakis, Owens. Calculated threshold correction
logarithms. Expected to be major component of total NNLO correction.

→ Flat 3 − 4% correction. Consistent with what is known from NLO. Smaller than
systematics on data.

Mistakes from ignoring jets in fits bigger than mistakes made at NNLO by not knowing
exact hard cross-section.
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Reasonable stability order by order for
(quark-dominated) W and Z cross-
sections.

This fairly good convergence is largely
guaranteed because the quarks are fit
directly to data. Much worse for gluon
dominated quantities e.g. FL(x,Q

2), as
seen. Unstable at small x and Q2.
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Approach to Look for Safe Theoretical Regions.

In order to investigate real quality of fit and regions with problems vary kinematic cuts
on data.

Procedure – change W 2
cut, Q

2
cut and xcut, re-fit and see if quality of fit to remaining

data improves and/or input parameters change dramatically. Continue until quality of
fit and partons both stabilize.

Raising Q2
cut from 2GeV2 in steps there is a slow continuous and significant

improvement for higher Q2 up to > 10GeV2.

Raising xcut from 0 to 0.005 continuous improvement. At each step moderate x gluon
becomes more positive.

→ MRST2003 conservative partons. Should be most reliable method of parton
determination (∆χ2 = −70 for remaining data), but only applicable for restricted
range of x, Q2. → αS(M

2
Z) = 0.1165± 0.004.

Also NNLO conservative partons. Similar cuts and improvement in fit quality (bit
smaller), but change in partons considerably less. Aleady includes important theoretical
corrections.
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Variation in predictions with cuts. Indicates range of possible theoretical error.
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MRST NLO and NNLO partons

Much more reliable at NNLO. LHC uncertainties ∼ 3−4% including theory uncertainty.
σW a good candidate for luminosity determination.
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A change in the mass of the vector
boson is very similar to a change
in centre of mass energy for a fixed
mass. Hence the variation with cuts
for Z ′ with mass 1000 GeV is similar
to that for W production at the
Tevatron rather than the LHC.
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CTEQ results

CTEQ see similar type of behaviour
with cuts, though not as dramatic.

With conservative cuts on data
their input gluon is as keen to
have negative component (remember
Q2

0 = 1.69GeV2), and best value of
αS(M

2
Z) moves lower.

Blue line – negative gluon allowed.

Black line – positive definite gluon.

Verifies negative/small gluon at low
x and Q2 not due to data at low x
and Q2.
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Prediction stability.
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Also find prediction for σW at the
LHC moves down a little as more
cuts imposed. Not as significant as
MRST by a long way, it appears.
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However, loss of data leads to larger
errors, and χ2 profile is very flat
indeed in the downwards direction.

Not really any inconsistency with
MRST.

If one is cautious about accuracy of
theory at low x and Q2, conclusion
that uncertainty large on small x-
sensitive quantities holds. CTEQ
claim no reason to be cautious.

blue line - conservative cuts

green line - semi-conservative cuts

black line - normal cuts.

Not so much of an issue at NNLO
though.
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Conclusions

One can determine the parton distributions and predict cross-sections by performing
global fits, and the fit quality using NLO or NNLO QCD is fairly good.

Various ways of looking at uncertainties due to errors on data. Uncertainties rather
small – ∼ 1− 5%for most LHC quantities. Ratios often don’t reduce uncertainties.

QED corrections small but introduce important isospin asymmetry.

Uncertainty from input assumptions e.g. cuts on data, data used, etc., comparable and
potentially larger. Can shift central values of predictions significantly. Assumptions
about input form can solve apparent high-ET jet problem (even with weak corrections).

Errors from higher orders/resummation potentially large. Cutting out low x and/or Q2

allows improved fit to remaining data, and altered partons. CTEQ see some effects,
but much smaller. NNLO much more stable than NLO.

Theory (in general terms) often the dominant source of uncertainty. Much progress
– NNLO, resummations .... Lots of work to do on this. Pretty much full NNLO fits
imminent. Should beome new standard.
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MRST(2001) NLO fit , x = 0.00005 - 0.00032
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MRST2002

MRST(abs.)

H1 96/97+98/99

ZEUS 96/97 (×0.98)

NMC
E665

Saturation corrections do not help
at NLO or NNLO.

MRST fit with slightly steep input
gluon and fairly large shadowing
corrections extrapolated to Q2 ≤

5GeV2
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Table 2: Cross sections for Drell-Yan pairs (e+e−) with PYTHIA 6.206. The errors
shown are the statistical errors of the Monte-Carlo generation.

PDF set Comment xsec
81 < M < 101 GeV

CTEQ5L PYTHIA internal 1516 ± 5 pb
CTEQ5L PDFLIB 1536 ± 5 pb
CTEQ6 LHAPDF 1564 ± 5 pb
MRST2001 LHAPDF 1591 ± 5 pb
Fermi2002 LHAPDF 1299 ± 4 pb

M > 1000 GeV
CTEQ5L PYTHIA internal 6.58 ± 0.02 fb
CTEQ5L PDFLIB 6.68 ± 0.02 fb
CTEQ6 LHAPDF 6.76 ± 0.02 fb
MRST2001 LHAPDF 7.09 ± 0.02 fb
Fermi2002 LHAPDF 7.94 ± 0.03 fb

Note anti-correlation between deviations at high and low mass, i.e. high and low x.
Typical result from sum rules and evolution.
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The ratio of the conservative
partons to the default partons
at NLO. One can see the dip
of the conservative partons below
xcut = 0.005.
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The ratio of the conservative
partons to the default partons
at NNLO. Now xcut = 0.005
and Q2

cut = 7GeV2. Slight
improvement.

∆χ2 still large.

However, now the partons are
similar below xcut = 0.005.
Significant or partially accidental?
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MRST(2001) NLO fit , x= 0.008 - 0.032
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Comparison of MRST(2001) F2(x,Q
2) with HERA, NMC and E665 data (left) and

of CTEQ6 F2(x,Q
2) and H1 data.
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Rapidity
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Comparison of prediction for
(dσW/dyW ) for the standard MRST
partons and the conservative set.
The reduction in the total cross-
section in the latter case is clearly
due to the huge reduction at high yW
and represents the possible type of
theoretical uncertainty in this region
when working at NLO.

Note a slight increase in cross-section
for yW = 0 (x = 0.006). Due to
increased evolution of quarks here.
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