Madison, DIS 2005

April 27th, 2005

PROTON PDFS USING STRUCTURE FUNCTION AND JET DATA FROM ZEUS

Δ

Juan Terrón (Universidad Autónoma de Madrid, Spain)

Determination of the proton PDFs

- Observables used in the fits to determine the proton PDFs:
- ightarrow Inclusive measurements of deep inelastic lN scattering
 - Advantages:
 - \rightarrow inclusive (only final-state lepton is tagged)
 - ⇒ no QCD corrections associated to the final-state signature (lepton!)
 - \Rightarrow no hadronisation corrections
 - associated to the final-state signature (lepton!)
 - Disadvantages:
 - \rightarrow the gluon distribution contributes indirectly through higher-order terms
- Observables based on jets have hardly been used (except jet production in $p\bar{p}$ at TeVatron)
 - \rightarrow large QCD corrections and hadronisation corrections
- That's the past! NOW there are measurements of jet cross sections at HERA
 - \Rightarrow directly sensitive to the gluon density in the proton
 - ⇒ with <u>small</u> experimental and theoretical (terms beyond NLO, hadronisation) uncertainties!

Determination of PDFs using structure function and jet data from ZEUS

• Determination of the proton PDFs using inclusive measurements of NC and CC DIS $e^{\pm}p$ in a large level arm of x and $Q^2 \Rightarrow 6.3 \cdot 10^{-5} < x < 0.65, 2.7 < Q^2 < 30000 \text{ GeV}^2$ and measurements of jet cross sections in NC DIS and γp collisions from ZEUS only (!)

• Sufficient sensitivity to determine the proton PDFs within a single experiment

Inclusive Production of High- E_T Jets in NC DIS in the Breit Frame

• In the Breit frame the virtual boson collides head-on with the proton

• High- E_T jet production in the Breit frame

- \rightarrow suppression of the Born contribution (struck quark has zero E_T)
- \rightarrow suppression of the beam-remnant jet (zero E_T)
- \rightarrow lowest-order contributions from
 - ullet Boson-gluon fusion process $\left| \gamma^{*}g
 ightarrow qar{q}
 ight|$
 - QCD-Compton process $\gamma^*q
 ightarrow qg$

 \Rightarrow directly sensitive to α_s and the gluon density in the proton

Inclusive Jet Cross Sections in NC DIS at $Q^2 > 125 \text{ GeV}^2$

→ jet energy scale (1% for $E_{T,jet} > 10$ GeV) ⇒ $\sim \pm 5\%$ on the cross sections

• Small parton-to-hadron corrections $(C_{had}): < 10\%$

 $\rightarrow < 5\%$ for $Q^2 > 250$ GeV² except for lowest- $E^B_{T,jet}$ point

Inclusive Jet Cross Sections in NC DIS at $Q^2 > 125 \text{ GeV}^2$

- Several NLO QCD ($\mathcal{O}(\alpha_s^2)$) programs are available for performing jet-cross-section calculations: MEPJET, DISENT, DISASTER++, NLOJET
- Small theoretical uncertainties :

→ higher-order terms (> NLO); varying μ_R between $\frac{1}{2} \cdot E_{T,jet}^B$ and $2 \cdot E_{T,jet}^B \Rightarrow \pm 5\%$ → hadronisation corrections; variance of C_{had} values (ARIADNE, LEPTO-MEPS, HERWIG) $\Rightarrow < 1\%$

• Inclusive jet cross sections in NC DIS in the Breit frame provide <u>direct</u> sensitivity to the gluon density in the proton with <u>small</u> experimental and theoretical uncertainties

Dijet Photoproduction

- Production of jets in γp collisions has been measured via ep scattering at $Q^2 \approx 0$
- At lowest order QCD, two hard scattering processes contribute to jet production \Rightarrow
- pQCD calculations of jet cross sections

$$\hat{\sigma}_{2jet} = \sum_{a,b} \int_0^1 dy \ f_{\gamma/e}(y) \int_0^1 dx_\gamma \ f_{a/\gamma}(x_\gamma,\mu_{F\gamma}^2) \int_0^1 dx_p \ f_{b/p}(x_p,\mu_{Fp}^2) \ \hat{\sigma}_{ab o jj}$$

longitudinal momentum fraction of $\gamma/e^+(y)$, parton $a/\gamma(x_{\gamma})$, parton $b/\text{proton}(x_p)$ $\rightarrow f_{\gamma/e}(y) = \text{flux of photons in the positron (WW approximation)}$ $\rightarrow f_{a/\gamma}(x_{\gamma}, \mu_{F\gamma}^2) = \text{parton densities in the photon (for direct processes <math>\delta(1 - x_{\gamma})$)} $\rightarrow f_{b/p}(x_p, \mu_{Fp}^2) = \text{parton densities in the proton}$ $\rightarrow \sigma_{ab \rightarrow jj}$ subprocess cross section; short-distance structure of the interaction

Dijet Photoproduction

- Measurements of dijet photoproduction provide

 direct sensitivity to α_s and gluon density in the proton
 However, resolved processes are also sensitive
 - to both the quark and gluon densities in the photon
- \rightarrow Photon structure: information on quark densities from F_2^{γ} in e^+e^- ; gluon density poorly constrained!
- To suppress the dependence on the photon PDFs
- → measurements restricted to the region where direct processes dominate
- ⇒ Observable to separate the contributions from resolved and direct processes: the fraction of the photon's energy participating in the production of the dijet system

$$x_{\gamma}^{obs} = rac{1}{2E_{\gamma}} \sum_{\mathrm{i}=1}^{2} E_{T}^{jet_{i}} e^{-\eta^{jet_{i}}}$$

ightarrow Direct-process-enriched region: $x_{\gamma}^{OBS} > 0.75$

Dijet Photoproduction Cross Sections for $x_{\gamma}^{obs} > 0.75$

J Terrón (Madrid)

Madison, DIS 2005

Dijet Photoproduction Cross Sections for $x_{\gamma}^{obs} > 0.75$

- Several NLO QCD $(\mathcal{O}(\alpha \alpha_s^2))$ programs are available for performing jet-cross-section calculations: Klasen & Kramer, Harris & Owens, Aurenche et al, Frixione & Ridolfi
- Small theoretical uncertainties :

→ higher-order terms (> NLO); varying μ_R between $\frac{1}{4} \cdot E_T^{\text{sum}}$ and $E_T^{\text{sum}} \Rightarrow \pm 10\%$ → hadronisation corrections; half the spread of

 C_{had} values (PYTHIA, HERWIG) \Rightarrow 2 - 3%

• Dijet cross sections in photoproduction provide <u>direct</u> sensitivity to the <u>gluon density</u> in the proton with <u>small</u> experimental and and theoretical uncertainties

Determination of the proton PDFs

• Parametrization of the proton PDFs

 $\rightarrow u$ valence (xu_V) , d valence (xd_V) , gluon (xg), total sea (xS) and $x\Delta = x(\bar{d} - \bar{u})$ at $Q_0^2 = 7$ GeV² by the functional form

 $xf(x) = p_1 x^{p_2} (1-x)^{p_3} (1+p_4 x)$

• Constraints on the parameters $\{p_i\}$:

ightarrow momentum and number sum rules \Rightarrow $p_{1,g}, p_{1,u_V}, p_{1,d_V}$

- \rightarrow no sensitivity to difference on low-x behaviour of u and d valence: $p_{2,u_V} = p_{2,d_V}$
- \rightarrow no sensitivity to flavour structure of light-quark sea: fix $p_{i,\Delta}$ consistent with Gottfried sum rule and Drell-Yan data
- \rightarrow suppression of strange sea in accordance with dimuon data from CCFR-NuTeV
- The results of the fit are not sensitive to reasonable variations of these assumptions
 - \rightarrow it is possible to extract a flavour-averaged sea distribution from ZEUS data alone
- Heavy quarks: variable flavour-number scheme of Roberts and Thorne

 \Rightarrow 11 free parameters (+ α_s when free; otherwise $\alpha_s(M_Z) = 0.118$)

• Evolution of the PDFs with the energy scale: DGLAP equations at NLO (\overline{MS} scheme)

Inclusion of jet cross sections in a fit of the proton PDFs

- In contrast with the evaluation of the structure functions from the evolved PDFs,
 → the calculation of jet cross sections at NLO requires much more CPU time:
 \$\mathcal{O}\$(10) hours per PDF set \$\Rightarrow\$ Unaffordable in a fit of the proton PDFs
- Deconvolution of the PDFs and α_s from the matrix elements in the calculations

 → construction of grids such that the calculations for the jet cross sections can be performed sufficiently fast (and accurately) ⇒ O(1 second) per PDF set!

$$\sigma_{jet}(\text{bin i}) = \sum_{n=1,2} \sum_{a=q,\bar{q},g} \sum_{j} \sum_{k} f_a(\xi_k, Q_j^2) \cdot \alpha_s^n(Q_j^2) \cdot G_{i,a,n,\xi_k,Q_j^2}$$

 $\rightarrow G_{i,a,n,\xi_k,Q_j^2}$ grid of weights in the " $(x = \xi, Q^2)$ " plane for a given bin of the cross section (i), parton species (a) and order (n); typical size in $(\xi, Q^2) \rightarrow 100 \times 100$

 \Rightarrow jet-cross-section calculations can be performed for <u>ANY PDF set and ANY value of α_s </u> in a fast way and with an accuracy better than 0.5%

Determination of the proton PDFs

- Data sets used in the fit (577 data points):
- \rightarrow Structure function measurements: reduced double differential cross sections in x and Q^2 for
 - \bullet neutral current DIS e^+p and e^-p
 - ullet charged current DIS e^+p and e^-p
- \rightarrow Jet cross section measurements:
 - inclusive jet production in NC DIS
 - \bullet dijet production in γp collisions

$$\Rightarrow \ 6.3 \cdot 10^{-5} < x < 0.65, 2.7 < Q^2 < 30000 \, {\rm GeV^2}$$

- $ightarrow W^2 > 20~{
 m GeV^2}$
- Full account of correlated experimental uncertainties using the offset method
- A good description of the data is obtained:
 - $\chi^2 = 470$ for 577 data points

Low- Q^2 NC DIS e^+p data vs ZEUS-JETS fit

High- Q^2 NC and CC DIS $e^{\pm}p$ data vs ZEUS-JETS fi t

Inclusive Jet Production in NC DIS e^+p $Q^2 > 125 \ {
m GeV}^2, E^B_{T,jet} > 8 \ {
m GeV}$

Dijet Production in γp collisions $E_T^{
m jet,1(2)}>14~(11)~{
m GeV}, x_\gamma^{obs}>0.75$

Valence distributions

- Precision of the valence quark distributions
- \rightarrow at high-x not as well constrained as in global PDF fits which include fixed-target DIS data
- → competitive + the advantage of being free from heavy-target corrections, higher twists and isospin-symmetry assumptions

Gluon and sea distributions

- Precision of the gluon and sea distributions
- \rightarrow at low-x: as well determined as in global PDF fits which make use of HERA data
- $\rightarrow \frac{\text{at higher-}x:}{\text{reduced by the addition of jet data}}$
- Model uncertainties in PDFs:
 - \rightarrow variation of Q_0^2 in the range $4 < Q_0^2 < 10~{\rm GeV^2}$
 - \rightarrow modification $(1 + p_4 x) \rightarrow (1 + p_5 \sqrt{x})$ in parametrizations of valence quarks
 - \rightarrow choice of constraints in parametrization of sea
 - \rightarrow tighter cuts on jet data; $E_{T,jet}^B > 10$ GeV in NC DIS and $E_T^{jet,1} > 17$ GeV in γp
 - \rightarrow parton-to-hadron corrections to jet cross sections
 - \rightarrow residual uncertainty due to photon PDFs used in the dijet calculations (AFG \rightarrow GRV)

Х

Gluon and sea distributions

- Precision of the gluon and sea distributions
- \rightarrow at low-*x*: as well determined as in global PDF fits which make use of HERA data
- $\rightarrow \underbrace{ \text{at higher-}x: \text{the uncertainty of the gluon has been} }_{\text{reduced by the addition of jet data} }$
- Model uncertainties in PDFs:
 - \rightarrow variation of Q_0^2 in the range $4 < Q_0^2 < 10~{\rm GeV^2}$
 - \rightarrow modification $(1 + p_4 x) \rightarrow (1 + p_5 \sqrt{x})$ in parametrizations of valence quarks
 - \rightarrow choice of constraints in parametrization of sea
 - \rightarrow tighter cuts on jet data; $E_{T,jet}^B > 10$ GeV in NC DIS and $E_T^{jet,1} > 17$ GeV in γp
 - \rightarrow parton-to-hadron corrections to jet cross sections
 - \rightarrow residual uncertainty due to photon PDFs used in the dijet calculations (AFG \rightarrow GRV)

⇒ Effects much smaller than the experimental uncertainties

Improving the gluon distribution: jet data

- Comparison of gluon distributions from fits with and without jet data
- \rightarrow no significant change of the shape: no tension between jet and inclusive data
- \rightarrow the jet cross sections constrain the gluon density in the range 0.01 - 0.4
- \rightarrow Sizeable reduction of the gluon uncertainty
- e.g. from 17% to 10% at x = 0.06 and $Q^2 = 7 \text{ GeV}^{2^{-0.4}}_{-0.6}$
 - \rightarrow similar reduction by a factor of two in the mid-x region over the full Q^2 range

J Terrón (Madrid)

• Compatible with H1 analysis

Determination of $\alpha_s(M_Z)$

- Simultaneous determination of the proton PDFs and $\alpha_s(M_Z)$
- Jet cross sections are directly sensitive to $\alpha_s(M_Z)$ via $\gamma^{(*)}g \rightarrow q\bar{q}$ (coupled to gluon density) and via $\gamma^{(*)}q \rightarrow qq$ (NOT coupled to gluon density)
- ⇒ The inclusion of the jet cross sections allows an extraction of $\alpha_s(M_Z)$ that is NOT strongly correlated to the gluon density

 $egin{aligned} lpha_s(M_Z) &= 0.1183 \pm 0.0007 \; (ext{uncorr.}) \pm 0.0022 \; (ext{corr.}) \ &\pm 0.0016 \; (ext{norm.}) \pm 0.0008 \; (ext{model}) \end{aligned}$

- + estimation of the uncertainty due to terms beyond NLO $\rightarrow \Delta \alpha_s(M_Z) = \pm 0.0050$ \Rightarrow Precise determination $\alpha_s(M_Z) = 0.1183 \pm 0.0058$ from ZEUS data alone
- ightarrow in agreement with world average $lpha_s(M_Z)=0.1182\pm0.0027$ (Bethke, 2004)

Summary

- Due to the precision and kinematic coverage of the ZEUS measurements on structure functions and jet cross sections
 - \Rightarrow determination of α_s and the proton PDFs within a single experiment (ZEUS!) with minimal external input
- Feasibility of including rigorously jet cross-section measurements in a global fit
- Advantages of including jet cross-section measurements which have been selected according to \rightarrow direct sensitivity to α_s and the gluon density in the proton and small experimental and theoretical uncertainties
 - \Rightarrow sizeable reduction of the uncertainty of the gluon density in the mid- to high-x region
 - \Rightarrow precise determination of α_s from HERA data alone

 $lpha_s(M_Z) = 0.1183 \pm 0.0028 \; ({
m exp.}) \pm 0.0008 \; ({
m model}) \pm 0.0050 \; ({
m th.})$