Tests of NLO BFKL resummation

Christophe Royon DAPNIA-SPP, CEA Saclay

DIS 2005 workshop, Madison, April 26 - May 1 2005

Contents:

- Introduction and motivation
- LO BFKL fits to F_2
- NLO BFKL: saddle point approximation, fit to F_2
- Analysis of BFKL-NLO in Mellin space

Work done in collaboration with Robi Peschanski, Laurent Schoeffel: hep-ph/0411338, accepted by Nucl.Phys.

Motivation

- Effective BFKL LO phenomenology: LO BFKL successful for F_2 (proton) for $x \leq 10^{-2}$, but with effective $\alpha_S \sim 0.1!$
- Tests of BFKL NLO: Theoretical problems, Expected NLO improvement fails (without resummation), creating spurious divergences
- Resummed NLO BFKL kernels: Theoretically improved, but practical complexity
- BFKL NLO phenomenology: Direct tests of BFKL NLO resummations using data, 2 aspects: F₂ NLO fits inspired by LO experience, direct tests in Mellin space

"Effective" LO BFKL phenomenology

• Expression of the proton structure functions at LO:

$$(F_T, F_L, G) = \int \frac{d\gamma}{2i\pi} \left(\frac{Q^2}{Q_0^2}\right)^{\gamma} e^{\frac{\alpha_S N_C}{\pi}\chi(\gamma)Y} (h_T(\gamma), h_L(\gamma), 1) \eta(\gamma)$$

- Impact factors:
 - Coupling to γ : $h(\gamma)$ perturbative QCD,
 - Coupling to proton: $\eta(\gamma)$, non perturbative, leads to unknown normalisation after saddle point approximation, to be determined by fitting the data

$$-\chi_{LO}(\gamma) = 2\Psi(1) - \Psi(\gamma) - \Psi(1-\gamma)$$

"Effective" LO BFKL phenomenology (cont.)

• Simple saddle point approximation:

$$F_2 = C e^{\alpha_S \chi(\frac{1}{2})Y} \frac{Q}{Q_0} e^{-\frac{\log^2(Q/Q_0)}{2\alpha_S \chi''(1/2)Y}}$$

• 3-parameter fit to proton F_2 (α_S , Q_0 , C) $\chi^2/dof \sim 1$)

"Effective" LO BFKL phenomenology (cont.)

- H. Navelet, R. Peschanski, C. Royon, S. Wallon, 1994, A.I.Lengyel, M.U.T. Machado, hep-ph 0304195: nice description of F₂ data using LO BFKL
- Low value of α in fit: $\alpha = 0.08$ instead of $\alpha_S = 0.2$ in the Q^2 HERA range
- What about NLO? we know that higher order BFKL corrections are important, what is the impact?
- Understand why LO BFKL works so well despite of high corrections to BFKL equations

"Effective" NLO BFKL phenomenology

• Idea: perform the same saddle point approximation as at LO using χ_{NLO} given by BFKL NLO

• Saddle point approximation

$$F_2 = C e^{\alpha_{RGE}\chi_{eff}(\gamma_c,\alpha_{RGE})Y} \left(Q^2/Q_0^2\right)^{\gamma_c}$$

$$e^{-\frac{\log^2(Q/Q_0)}{2\alpha_{RGE}\chi''_{eff}(\gamma_c,\alpha_{RGE})Y}}$$

 γ_C and χ_{eff} : (properties of BFKL NLO if small-x structure function is dominated by the perturbative Green function) (ω is the Mellin transform of Y)

$$\frac{d\chi_{eff}}{d\gamma}(\gamma_C, \alpha_{RGE}(Q^2)) = 0$$
$$\chi_{eff}(\gamma, \alpha_{RGE}) = \omega(\gamma, \alpha_{RGE})/\alpha_{RGE}$$

- 2 parameters fit: C and Q_0 , (α given by RGE at NLO)
- Difficulties: χ complicate formula at NLO and scheme dependent

Strategy for NLO fits

- First step: Knowledge of $\chi_{NLO}(\gamma, \omega, \alpha)$ from BFKL equation and resummation schemes
- Third step: Numerical determination of saddle point values γ_C as a function of α as well as the values of χ and χ"
- Fourth step: Perform the BFKL-NLO fit to HERA F_2 data with two free parameters Cand Q_0^2

Remarks on resummation schemes

- NLO BFKL kernels need resummation: to remove additional spurious singularities in γ and $(1 - \gamma)$
- NLO BFKL kernel:

 $\chi_{NLO}(\gamma,\omega) = \chi^{(0)}(\gamma,\omega) + \alpha(\chi_1(\gamma) - \chi_1^{(0)}(\gamma))$

- $\chi_1(\gamma)$: calculated, NLO BFKL eigenvalues (Lipatov, Fadin, Camici, Ciafaloni)
- χ⁽⁰⁾ and χ₁(0): ambiguity of resummation at higher order than NLO, different ways to remove these singularities, not imposed by BFKL equation, Salam, Ciafaloni, Colferai
- Transformation of the energy scale: $\gamma \rightarrow \gamma - \omega/2$, Salam

Remarks on resummation schemes (Cont.)

- Different schemes tested in the following:
 - Schemes 1 and 2 (Salam): $\chi^{(0)}$ not changed changes in $\chi_1(0)$ only, does not work...
 - Scheme 3 (Salam): $\chi^{(0)}(\gamma,\omega) = (1 - \alpha A)(2\Psi(1) - \Psi(\gamma + \frac{\omega}{2} + \alpha B) - \Psi(1 - \gamma + \frac{\omega}{2} + \alpha B)$ and A and B are determined so that $\chi_1(\gamma) - \chi_1^{(0)}(\gamma)$ is regular when $\gamma \leftarrow 0$
 - Scheme 4 (Salam): other form of $\chi^{(0)}$
 - Scheme CCS (Ciafaloni et al., hep-ph 0307188)

χ_{NLO} for different schemes

- $\chi_{NLO}(\gamma, \omega, \alpha)$ for different resummation schemes (CCS, S3 and S4)
- As an example $\alpha = 0.15$ and four values of ω : betweeb 0 and 0.3

ω as a function of γ

- ω as a function of γ for one scheme (CCS) as an example, solution of $\chi(\gamma, \omega) = \omega/\alpha$
- α varies between 0.1 and 0.22 in steps of 0.02

Determination of saddle point γ_C

Using saddle point equation, determination of γ_C to perform fits to F_2 (working for $\alpha = 0.2$)

BFKL NLO fit to H1 data

Result of the NLO BFKL fit shown for CSS and S3 schemes: disagreement at low Q^2

Data / theory

- Data / theory: points: LO fit, curves: NLO fit for S3 and CSS
- Why such a difference: analysis in Mellin space

Determination of γ^* , γ_C

- In Mellin space, γ^* defined as $dlogF_2(\omega, Q^2)/dlogQ^2$ is the saddle point of the structure function
- It is possible to check that γ^* verifies the property $\chi(\gamma^*(\omega, Q^2), \alpha_{RGE}(Q^2)) = \omega/\alpha_{RGE}(Q^2)$
- Idea: Use different parametrisations of F_2 , and perform a Mellin transform of these parametrisations
- 3 parametrisations based on DGLAP evolution equation: Martin, Roberts, Stirling (MRS 2001), Glück, Reya, Vogt (GRV 98), CTEQ (CTEQ 6.1)
- 1 additional parametrisation based on a Regge analysis of proton structure function data: ALLM

$$\gamma^* = \frac{dlog F_2(\omega, Q^2)}{dlog Q^2}$$

Phenomenological test of LO and NLO BFKL

$$\frac{\omega}{\alpha_S} = \chi(\gamma^*(\omega), \omega, Q^2)$$

- γ^* determined from the parametrisation in different Q^2 and ω bins
- Compute $\chi(\gamma^*(\omega), \omega, Q^2)$ at LO and NLO
- Perform a linear fit of $\chi(\gamma^*(\omega), \omega, Q^2)$ as a function of ω in the different Q^2 bins, and check properties

 $\chi(\gamma^*)$ at NLO - scheme 3

Consistency check:

$$\frac{\omega}{\alpha_S} = \chi(\gamma^*(\omega), \omega, Q^2)$$

$\chi(\gamma^*)$ at NLO - scheme 3

- black: MRS, green: linear fit to MRS, red: consistency check
- Consistency check fails!

Test of BFKL NLO - Conclusion

$$\frac{\omega}{\alpha_S} = \chi(\gamma^*(\omega), \omega, Q^2)$$

- Not verified for schemes 1 and 2
- Schemes 3 and 4: We find a good linear fit with two caveats:
 - does not go through the origin in (χ, ω) plane
 - the slope is not $\alpha_S(RGE)$: We compare the slope of the linear fit to the value of α_S used in χ . (see next slide)
- Conclusion: Consistency check not successful Sensitivity to NNLO effects? γq coupling (impact factors) not known for BFKL NLO?, saddle point approximation not valid?

 α_{out} vs $\alpha_S(RGE)$ - scheme 4

upper curve: $\alpha_S(RGE)$, lower curve: α coming from the linear fit

Conclusion

- LO BFKL fits successful with a low value for α
- Phenomenological studies of NLO BFKL: F_2 fit with saddle point approximation not as good as a t LO \rightarrow perform study in Mellin space to test BFKL properties
- Test of the property

$$\frac{\omega}{\alpha_S} = \chi(\gamma^*(\omega), \omega, Q^2)$$

- Property partially verified for resummation schemes 3 and 4 (Salam) and CCS (linearity, but does not go through the origin, and slope not equal to $\alpha_S(RGE)$
- Identify the reasons? NNLO effects? impact factors? saddle point approximation?