Tests of NLO BFKL resummation

Christophe Royon
DAPNIA-SPP, CEA Saclay

DIS 2005 workshop, Madison, April 26 - May 12005

Contents:

- Introduction and motivation
- LO BFKL fits to F_{2}
- NLO BFKL: saddle point approximation, fit to F_{2}
- Analysis of BFKL-NLO in Mellin space Work done in collaboration with Robi Peschanski, Laurent Schoeffel: hep-ph/0411338, accepted by Nucl.Phys.

Motivation

- Effective BFKL LO phenomenology: LO BFKL successful for F_{2} (proton) for $x \leq 10^{-2}$, but with effective $\alpha_{S} \sim 0.1$!
- Tests of BFKL NLO: Theoretical problems, Expected NLO improvement fails (without resummation), creating spurious divergences
- Resummed NLO BFKL kernels: Theoretically improved, but practical complexity
- BFKL NLO phenomenology: Direct tests of BFKL NLO resummations using data, 2 aspects: F_{2} NLO fits inspired by LO experience, direct tests in Mellin space

"Effective" LO BFKL phenomenology

- Expression of the proton structure functions at LO:

$$
\begin{aligned}
\left(F_{T}, F_{L}, G\right)= & \int \frac{d \gamma}{2 i \pi}\left(\frac{Q^{2}}{Q_{0}^{2}}\right)^{\gamma} e^{\frac{\alpha_{S} N_{C}}{\pi} \chi(\gamma) Y} \\
& \left(h_{T}(\gamma), h_{L}(\gamma), 1\right) \eta(\gamma)
\end{aligned}
$$

- Impact factors:
- Coupling to $\gamma: h(\gamma)$ perturbative QCD,
- Coupling to proton: $\eta(\gamma)$, non perturbative, leads to unknown normalisation after saddle point approximation, to be determined by fitting the data

$$
-\chi_{L O}(\gamma)=2 \Psi(1)-\Psi(\gamma)-\Psi(1-\gamma)
$$

"Effective" LO BFKL phenomenology (cont.)

- Simple saddle point approximation:

$$
F_{2}=C e^{\alpha_{S} \chi\left(\frac{1}{2}\right) Y} \frac{Q}{Q_{0}} e^{-\frac{\log ^{2}\left(Q / Q_{0}\right.}{2 \alpha_{S} \chi^{\prime \prime}(1 / 2) Y}}
$$

- 3-parameter fit to proton $F_{2}\left(\alpha_{S}, Q_{0}, C\right)$ $\left.\chi^{2} / d o f \sim 1\right)$

"Effective" LO BFKL phenomenology (cont.)

- H. Navelet, R. Peschanski, C. Royon, S. Wallon, 1994, A.I.Lengyel, M.U.T. Machado, hep-ph 0304195: nice description of F_{2} data using LO BFKL
- Low value of α in fit: $\alpha=0.08$ instead of $\alpha_{S}=0.2$ in the Q^{2} HERA range
- What about NLO? we know that higher order BFKL corrections are important, what is the impact?
- Understand why LO BFKL works so well despite of high corrections to BFKL equations

"Effective" NLO BFKL phenomenology

- Idea: perform the same saddle point approximation as at LO using $\chi_{N L O}$ given by BFKL NLO
- Saddle point approximation

$$
\begin{array}{r}
F_{2}=C e^{\alpha_{R G E} \chi_{e f f}\left(\gamma_{c}, \alpha_{R G E}\right) Y}\left(Q^{2} / Q_{0}^{2}\right)^{\gamma_{c}} \\
e^{-\frac{\log ^{2}\left(Q / Q_{0}\right)}{2 \alpha_{R G E} \chi_{e f f}^{\prime \prime}\left(\gamma_{c}, \alpha_{R G E}\right) Y}}
\end{array}
$$

γ_{C} and $\chi_{e f f}$: (properties of BFKL NLO if small-x structure function is dominated by the perturbative Green function) (ω is the Mellin transform of Y)

$$
\begin{array}{r}
\frac{d \chi_{e f f}}{d \gamma}\left(\gamma_{C}, \alpha_{R G E}\left(Q^{2}\right)\right)=0 \\
\chi_{e f f}\left(\gamma, \alpha_{R G E}\right)=\omega\left(\gamma, \alpha_{R G E}\right) / \alpha_{R G E}
\end{array}
$$

- 2 parameters fit: C and $Q_{0},(\alpha$ given by RGE at NLO)
- Difficulties: χ complicate formula at NLO and scheme dependent

Strategy for NLO fits

- First step: Knowledge of $\chi_{N L O}(\gamma, \omega, \alpha)$ from BFKL equation and resummation schemes
- Second step: Use implicit equation $\chi(\gamma, \omega)=\omega / \alpha$ to compute numerically ω as a function of γ for different schemes and values of α
- Third step: Numerical determination of saddle point values γ_{C} as a function of α as well as the values of χ and $\chi^{\prime \prime}$
- Fourth step: Perform the BFKL-NLO fit to HERA F_{2} data with two free parameters C and Q_{0}^{2}

Remarks on resummation schemes

- NLO BFKL kernels need resummation: to remove additional spurious singularities in γ and $(1-\gamma)$
- NLO BFKL kernel:

$$
\chi_{N L O}(\gamma, \omega)=\chi^{(0)}(\gamma, \omega)+\alpha\left(\chi_{1}(\gamma)-\chi_{1}^{(0)}(\gamma)\right)
$$

- $\chi_{1}(\gamma)$: calculated, NLO BFKL eigenvalues (Lipatov, Fadin, Camici, Ciafaloni)
- $\chi^{(0)}$ and $\chi_{1}(0)$: ambiguity of resummation at higher order than NLO, different ways to remove these singularities, not imposed by BFKL equation, Salam, Ciafaloni, Colferai
- Transformation of the energy scale: $\gamma \rightarrow \gamma-\omega / 2$, Salam

Remarks on resummation schemes (Cont.)

- Different schemes tested in the following:
- Schemes 1 and 2 (Salam): $\chi^{(0)}$ not changed changes in $\chi_{1}(0)$ only, does not work...
- Scheme 3 (Salam):
$\chi^{(0)}(\gamma, \omega)=(1-\alpha A)\left(2 \Psi(1)-\Psi\left(\gamma+\frac{\omega}{2}+\right.\right.$ $\alpha B)-\Psi\left(1-\gamma+\frac{\omega}{2}+\alpha B\right)$
and A and B are determined so that
$\chi_{1}(\gamma)-\chi_{1}^{(0)}(\gamma)$ is regular when $\gamma \leftarrow 0$
- Scheme 4 (Salam): other form of $\chi^{(0)}$
- Scheme CCS (Ciafaloni et al., hep-ph 0307188)

$\chi_{N L O}$ for different schemes

- $\chi_{N L O}(\gamma, \omega, \alpha)$ for different resummation schemes (CCS, S3 and S4)
- As an example $\alpha=0.15$ and four values of ω : betweeb 0 and 0.3

ω as a function of γ
- ω as a function of γ for one scheme (CCS) as an example, solution of $\chi(\gamma, \omega)=\omega / \alpha$
- α varies between 0.1 and 0.22 in steps of 0.02

Determination of saddle point γ_{C}

Using saddle point equation, determination of γ_{C} to perform fits to F_{2} (working for $\alpha=0.2$)

α

BFKL NLO fit to H1 data

Result of the NLO BFKL fit shown for CSS and S3 schemes: disagreement at low Q^{2}

Data / theory

- Data / theory: points: LO fit, curves: NLO fit for S3 and CSS
- Why such a difference: analysis in Mellin space

$\underline{\text { Determination of } \gamma^{*}, \gamma_{C}}$

- In Mellin space, γ^{*} defined as $d \log F_{2}\left(\omega, Q^{2}\right) / \operatorname{dlog} Q^{2}$ is the saddle point of the structure function
- It is possible to check that γ^{*} verifies the property
$\chi\left(\gamma^{*}\left(\omega, Q^{2}\right), \alpha_{R G E}\left(Q^{2}\right)\right)=\omega / \alpha_{R G E}\left(Q^{2}\right)$
- Idea: Use different parametrisations of F_{2}, and perform a Mellin transform of these parametrisations
- 3 parametrisations based on DGLAP evolution equation: Martin, Roberts, Stirling (MRS 2001), Glück, Reya, Vogt (GRV 98), CTEQ (CTEQ 6.1)
- 1 additional parametrisation based on a Regge analysis of proton structure function data: ALLM

$\underline{\text { Determination of } \gamma^{*}}$

$$
\gamma^{*}=\frac{d \log F_{2}\left(\omega, Q^{2}\right)}{d \log Q^{2}}
$$

$\underline{\text { Phenomenological test of LO and NLO BFKL }}$

$$
\frac{\omega}{\alpha_{S}}=\chi\left(\gamma^{*}(\omega), \omega, Q^{2}\right)
$$

- γ^{*} determined from the parametrisation in different Q^{2} and ω bins
- Compute $\chi\left(\gamma^{*}(\omega), \omega, Q^{2}\right)$ at LO and NLO
- Perform a linear fit of $\chi\left(\gamma^{*}(\omega), \omega, Q^{2}\right)$ as a function of ω in the different Q^{2} bins, and check properties

$\chi\left(\gamma^{*}\right)$ at NLO - scheme 3

Consistency check:

$$
\frac{\omega}{\alpha_{S}}=\chi\left(\gamma^{*}(\omega), \omega, Q^{2}\right)
$$

$\underline{\chi\left(\gamma^{*}\right) \text { at } \mathrm{NLO} \text { - scheme } 3}$

- black: MRS, green: linear fit to MRS, red: consistency check
- Consistency check fails!

Test of BFKL NLO - Conclusion

$$
\frac{\omega}{\alpha_{S}}=\chi\left(\gamma^{*}(\omega), \omega, Q^{2}\right)
$$

- Not verified for schemes 1 and 2
- Schemes 3 and 4: We find a good linear fit with two caveats:
- does not go through the origin in (χ, ω) plane
- the slope is not $\alpha_{S}(R G E)$: We compare the slope of the linear fit to the value of α_{S} used in χ. (see next slide)
- Conclusion: Consistency check not successful Sensitivity to NNLO effects? γq coupling (impact factors) not known for BFKL NLO?, saddle point approximation not valid?

$\alpha_{\text {out }}$ vs $\alpha_{S}(R G E)$ - scheme 4

upper curve: $\alpha_{S}(R G E)$, lower curve: α coming from the linear fit

Conclusion

- LO BFKL fits successful with a low value for α
- Phenomenological studies of NLO BFKL: F_{2} fit with saddle point approximation not as good as a t LO \rightarrow perform study in Mellin space to test BFKL properties
- Test of the property

$$
\frac{\omega}{\alpha_{S}}=\chi\left(\gamma^{*}(\omega), \omega, Q^{2}\right)
$$

- Property partially verified for resummation schemes 3 and 4 (Salam) and CCS (linearity, but does not go through the origin, and slope not equal to $\alpha_{S}(R G E)$
- Identify the reasons? NNLO effects? impact factors? saddle point approximation?

