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Abstract. I examine the past lattice QCD calculations of three representative observables, the
transverse quark distribution, momentum fraction, and axial charge, and emphasize the prospects
for not only quantitative comparison with experiment but also qualitative understanding of QCD.
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INTRODUCTION

Lattice QCD calculations provide the opportunity for both quantitative comparison with
experimental measurements and for advancing our qualitative understanding of QCD. I
examine several observables which exemplify this range of opportunities. The lattice
calculation of the moments of parton distributions is an essential step in achieving
quantitative agreement with experimental results. Additionally our understanding of
QCD can be further expanded by calculating the remaining moments of the generalized
parton distributions which determine the three dimensional distribution of the transverse
position and longitudinal momentum of quarks and gluons within the nucleon.

Generalized Form Factors. The generalized form factors provide an alternative but
equivalent language to the generalized parton distributions. They encode the ordinary
form factors and parton distributions as well as the nucleon spin decomposition [1] and
transverse quark distributions [2] and hence provide a unifying language to describe
calculations of nucleon structure. Each tower of twist two operators has a corresponding
set of generalized form factors. As an example the unpolarized operators Oµ1

����� µn
q

�
qiD

�
µ1 ����� iDµn � 1γµn 	 q define the generalized form factors Aq

ni, Bq
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ni � t � KA
ni � Bq

ni � t � KB
ni ��� δ n

evenCq
n � t � KC

n � U � P � (1)

where K are known functions of P and P � . A complete set of results can be found in [3].

Lattice Calculations. There have been several full QCD calculations of nucleon
structure to date. Results from these and other calculations [4-14] were shown at the
conference. Each calculation uses different actions as well as differing lattice spacings
and volumes. However the dominate systematic error in lattice calculations of nucleon
observables is still due to the chiral extrapolation.
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TRANSVERSE QUARK DISTRIBUTIONS

The transverse quark distribution q ( x )+*b ,.- gives the probability to find a quark of flavor q
carrying a fraction x of the nucleon’s longitudinal momentum at a displacement *b , from
the center of the nucleon. The moments of the transverse quark distribution are given by

qn (/*b , -1032 14 1
dx xn 4 1 q ( x )5*b , -1062 d2∆ ,( 2π - 2 e

4 i7b 8:9 7∆ 8 Aq
n0 (<; *∆2, ->= (2)

Current calculations are restricted to the lowest three moments, however the following
shows several ways to examine the transverse structure using just the low moments.

Q2 Dependence. The slope of the generalized form factors in the forward limit is of
particular interest because it determines the rms radius of the nth moment of q ( x )?*b ,@- ,

A
b2,CB n 0ED d2b , b2, D 14 1dxxn 4 1q ( x ) *b , -

D d2b , D 14 1dxxn 4 1q ( x )5*b , - 0 ; 4
Aq

n0
( 0 - dAq

n0
( 0 -

dQ2 = (3)

The moments in Eq. 3 are dominated by x near 1 for large n. In such a limit the quark
carries all the longitudinal momentum and is kinematically constrained to reside at
the center of the nucleon [4]. Thus higher moments determine the transverse size of
larger x quarks which are distributed more narrowly in b , . Consequently the qualitative
expectation, illustrated in Fig. 1, is that the slopes should decrease as n increases for
large enough n. That an expectation for large n is so clearly seen for the lowest three
moments demonstrates that the transverse distribution of quarks within the nucleon
depends strongly on the momentum fraction at which the quarks are probed.

x Dependence. The transverse rms radius of the nucleon at a fixed x is

A
b2, B x 0 D d2b , b2, q ( x )?*b , -

D d2b , q ( x ) *b ,.- )
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FIGURE 3. solid, dashed, dotted are qn FHGb I!J
for n K 1 L 2 L 3, q K u M d [6]
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whereas lattice calculations determine the transverse radius at a fixed moment n as
shown in Eq. 3. To understand the meaning of the transverse radius at a fixed moment
we can think of N b2OQP

n as a coarse grained transverse size of the nucleon corresponding
to a region centered on the average x of the nth moment,

R
x S n TEU d2b O U 1V 1dx W x W xn V 1q X x Y5Zb O\[

U d2b O U 1V 1dxxn V 1q X x Y Zb O [ T
R
xn S:] 2 X_^ 1 [ n U d2b O U 1

0 dxxnq X x [R
xn V 1 S ` (4)

Lattice QCD is not currently capable of calculating the anti-quark contribution in
R
x S n,

however the phenomenologically determined parton distributions indicate it is small
enough that it does not affect the following qualitative conclusions. Fig. 2 shows the
transverse radius versus corresponding momentum fraction for the lowest moments
illustrating, as above, that the transverse size of the nucleon depends significantly on
the longitudinal momentum of its constituents.

b O Dependence. By assuming a dipole ansatz for the generalized form factors the
b O dependence of each moment can be determined from Eq. 2. The details are given
in [6], and the results are shown in Fig. 3. Of particular importance are the lowest
two moments which determine the transverse distribution of quarks (n T 1) and of
longitudinal momentum (n T 2) within the nucleon.

MOMENTS OF PARTON DISTRIBUTIONS

Moments of parton distributions provide an opportunity for quantitative comparison
between experimental measurements and lattice calculations of nucleon structure. The
axial charge and momentum fraction of the nucleon represent the state of affairs with the
former observable providing an example of a potential success of current calculations
and the latter an example of a challenge to future calculations.R

x S u V d . Extensive quenched calculations of
R
x S u V d [7] have shown very little depen-

dence on mπ while overestimating the experimental result by nearly a factor of two. The



first unquenched calculations [15] confirmed the earlier quenched results and lead to the
suggestion that sizable chiral corrections could accommodate both lattice calculations
and experimental measurements [8]. Recent calculations with lighter quark masses [5, 9]
have not resolved this discrepancy, however one recent quenched calculation [16] shows
a significant but unconfirmed shift toward the experimental result.

gA. Lattice calculations of the nucleon axial coupling are beginning to mature. In
particular recent calculations with chiral actions allow for a non-perturbative renormal-
ization of gA. This observable has been shown to have sizable finite size corrections for
light quark masses [10, 11], however current calculations have reached large enough vol-
umes that such effects appear under control. Furthermore simple linear extrapolations,
in m2

π , of the lightest calculations [12] give estimates of 1 a 23 b 2 c to 1 a 26 b 2 c (using 3 to
6 of the lightest points) the latter of which agrees with the experimental measurement
within the statistical errors. However detailed study of the chiral behavior is needed to
reliably estimate the systematic errors in such extrapolations.

CONCLUSIONS

Lattice calculations of nucleon structure are beginning to realize their promise to elu-
cidate QCD and make contact with the experimental programs. Recent calculations are
painting a qualitative three dimensional picture of nucleon structure revealing a signif-
icant x dependence of the transverse size of the nucleon. Quantitative calculations of
moments of parton distributions are progressing, in particular the calculation of gA may
soon reach a few percent accuracy.
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