Understanding Parton Distributions from Lattice QCD

Dru B. Renner University of Arizona

Deep Inelastic Scattering 2005 April 29, 2005

Lattice Hadron Physics Collaboration

R. Edwards K. Orginos G. Fleming A. Pochinsky Ph. Hägler D. Richards J. Negele W. Schroers

http://talks.drubryantrenner.org/dis2005_4-29-05.pdf

Recent Lattice Calculations of Structure Functions

Three Representative Observables

- Transverse Quark Distributions
- Momentum Fraction
- Axial Charge

Generalized Parton Distributions

Generalized Form Factors

• for example, unpolarized twist two operators

$$O_q^{\mu_1\cdots\mu_n} = \overline{q}iD^{(\mu_1}\cdots iD^{\mu_{n-1}}\gamma^{\mu_n)}q$$

• off-forward matrix elements of the twist two operators ^[1]

$$\langle P', S' | O_q^{\mu_1 \dots \mu_n} | P, S \rangle = \overline{U}(P', S') \left[\sum_{\substack{i=0 \\ \text{even}}}^{n-1} A_{ni}^q(t) K_{ni}^A(P', P) \right]$$

+ $\sum_{\substack{i=0 \\ \text{even}}} B_{ni}^q(t) K_{ni}^B(P',P) + \delta_{\text{even}}^n C_n^q(t) K_n^C(P',P)] U(P,S)$

[1] X. D. Ji hep-ph/9807358

Parton Distributions and Form Factors

• moments of parton distributions - $\langle P|O_q^{\mu_1...\mu_n}|P
angle$

$$A_{n0}^{q}(0) = \int_{-1}^{1} dx \ x^{n-1} q(x)$$

• form factors - $\mathcal{O}^{\mu}_q = \overline{q} \gamma^{\mu} q$

$$A_{10}^q(t) = F_1^q(t)$$
 and $B_{10}^q(t) = F_2^q(t)$

Quark Angular Momenta and Transverse Quark Distributions

• quark angular momenta^[1]

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma^{u+d} + L^{u+d} + J^g$$

$$\Delta \Sigma^{q} = \tilde{A}_{10}^{q}(0) \qquad J^{q} = \frac{1}{2} \left(A_{20}^{q}(0) + B_{20}^{q}(0) \right) \qquad L^{q} = J^{q} - \frac{1}{2} \Delta \Sigma^{q}$$

• transverse quark distributions^[2]

$$\int_{-1}^{1} dx \ x^{n-1} q(x, \vec{b}_{\perp}) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} A_{n0}^{q}(-\vec{\Delta}_{\perp}^2)$$

[1] X. D. Ji hep-ph/9603249[2] M. Burkardt hep-ph/0005108

Full QCD Calculations

Collaboration	m_{π} (MeV)	Quark Action
LHPC/SESAM	> 650	Wilson
QCDSF/UKQCD	> 550	Clover Improved Wilson
RBCK	> 500	Domain Wall
LHPC/MILC	> 350	Staggered/Domain Wall

- a variety of lattice spacings and volumes
- dominant systematic error is still the extrapolation in m_π

What do we learn about the transverse quark structure of the nucleon?

Transverse Distributions

• at x = 1 a single quark carries all the momentum

$$\lim_{x \to 1} q(x, \vec{b}_{\perp}) \propto \delta^2(\vec{b}_{\perp})$$

• higher moments A_{n0}^q weight $x \sim 1$ more heavily

$$\lim_{n\to\infty} A^q_{n0}(t) \propto \int d^2 b_{\perp} \ e^{i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}} \delta^2(\vec{b}_{\perp}) = \text{constant}$$

• slopes of A_{n0}^q should decrease as n increases

graph from M. Burkardt hep-ph/0207047

Transverse Distributions: Q^2 Dependence (LHPC)

• slope of
$$A_{10}^{u-d} = -0.93 \pm 0.04 \; (\text{GeV})^{-2}$$

• slope of $A_{30}^{u-d} = -0.13 \pm 0.03 \text{ (GeV)}^{-2}$ (factor of 7)

Transverse Distributions: Q^2 Dependence (QCDSF)

• again, slopes of A_{n0}^q decrease as n increases

• for more QCDSF results see Wed's talk by G. Schierholz

graph from QCDSF hep-lat/0409162

Transverse Distributions: x Dependence

• transverse rms radius

$$\left\langle b_{\perp}^{2} \right\rangle_{x} = \frac{\int d^{2}b_{\perp} \, b_{\perp}^{2} \, q(x, \vec{b}_{\perp})}{\int d^{2}b_{\perp} \, q(x, \vec{b}_{\perp})}$$

• transverse rms *moment* radius

$$\frac{A'_{n0}(0)}{A_{n0}(0)} = -\frac{1}{4} \left\langle b_{\perp}^2 \right\rangle_{(n)} \qquad \left\langle b_{\perp}^2 \right\rangle_{(n)} = \frac{\int d^2 b_{\perp} \, b_{\perp}^2 \, \int_{-1}^1 dx \, x^{n-1} q(x, \vec{b}_{\perp})}{\int d^2 b_{\perp} \, \int_{-1}^1 dx \, x^{n-1} q(x, \vec{b}_{\perp})}$$

• the average x in $\left< b_{\perp}^2 \right>_{(n)}$

$$x_{\rm av}^{(n)} = \frac{\int d^2 b_{\perp} \int_{-1}^{1} dx \, x \cdot x^{n-1} q(x, \vec{b}_{\perp})}{\int d^2 b_{\perp} \int_{-1}^{1} dx \, x^{n-1} q(x, \vec{b}_{\perp})} = \frac{\langle x^n \rangle}{\langle x^{n-1} \rangle}$$

- non-singlet radius: $\sqrt{\left\langle b_{\perp}^2 \right\rangle_{u-d}^{(1)}} = 0.38 \text{ fm } \& \sqrt{\left\langle b_{\perp}^2 \right\rangle_{u-d}^{(3)}} = 0.15 \text{ fm},$ 61% decrease
- singlet radius: $\sqrt{\left\langle b_{\perp}^2 \right\rangle_{u+d}^{(1)}} = 0.46 \text{ fm } \& \sqrt{\left\langle b_{\perp}^2 \right\rangle_{u+d}^{(3)}} = 0.27 \text{ fm},$ 41% decrease

Transverse Distributions: \vec{b}_{\perp} Dependence (LHPC)

$$q_{1}(\vec{b}_{\perp}) = \int_{-1}^{1} dx \ q(x, \vec{b}_{\perp}) = \int \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{-i\vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} A_{10}^{q}(-\vec{\Delta}_{\perp}^{2})$$
$$q_{2}(\vec{b}_{\perp}) = \int_{-1}^{1} dx \ x \ q(x, \vec{b}_{\perp}) = \int \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{-i\vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} A_{20}^{q}(-\vec{\Delta}_{\perp}^{2})$$

What do we learn about the momentum fraction of the nucleon?

$\langle x \rangle_{u-d}$: m_{π} Dependence (QCDSF-Quenched)

• heavy pion world: observables are linear functions of m_π^2

graph from QCDSF hep-lat/0209160

 $\langle x \rangle_{u-d}$: Chiral Extrapolations? (LHPC)

• leading order χPT & heavy quark limit^[1]

$$\langle x^n \rangle_{u-d} = a_n \left(1 - \frac{(3g_A^2 + 1)m_\pi^2}{(4\pi f_\pi)^2} \ln \left(\frac{m_\pi^2}{m_\pi^2 + \mu^2} \right) \right) + b_n m_\pi^2$$

[1] Detmold, Melnitchouk, Negele, Renner, Thomas hep-lat/0103006

$\langle x \rangle_{u-d}$: Chiral Logs? (QCDSF)

graph from QCDSF hep-lat/0409162

$\langle x \rangle_{u-d}$: Chiral Logs? (RBCK)

graph from RBCK hep-lat/0411008

What do we learn about the axial coupling of the nucleon?

g_A : m_{π} Dependence (LHPC)

- curve is one loop chiral perturbation theory (including Δ) ^[1]
- parameters: f_{π} , g^A_{NN} , $g^A_{N\Delta}$, $g^A_{\Delta\Delta}$, $m_{\Delta} m_N$, $B_9 g_A B_{20}$
- only g^A_{NN} and $g^A_{\Delta\Delta}$ are fit below

[1] Hemmert et al hep-lat/0303002

RBCK data from graph in hep-lat/0409161 QCDSF data from graph in hep-lat/0409161

Conclusions

• the transverse size of the nucleon, $\sqrt{\langle r_{\perp}^2 \rangle}$, in the heavy pion world, shows a significant dependence on the longitudinal momentum fraction $\langle x \rangle$, and presents an opportunity to expand our understanding of QCD

- the momentum fraction, $\langle x \rangle_{u-d}$, shows very little quark mass dependence, is still about a factor of 2 too large, and presents a challenge for future lattice QCD calculations
- the axial charge, g_A , has strong but estimable finite volume effects, allows us to probe various low energy constants in the chiral lagrangian, and will likely come under quantitative control shortly