The EMC effect in effective field theory
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Abstract. Using effective field theory, we investigate nuclear modiiicn of nucleon parton dis-

tributions (for example, the EMC effect). We show that thévarsality of the shape distortion in

nuclear parton distributions (the factorisation of therRgmx and atomic numbery) dependence)

is model independent and emerges naturally in effectivd fletory. We present simple fits to ex-
perimental data that incorporate this factorisation.
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The 1983 European Muon Collaboration’s (EMC) observatibjnoff the deviation
of the ratioRee(X) of F»(X) structure functions in iron and deuterium in deep inelastic
scattering (DIS) has provoked much analysis and discussienthe years [2] since it
shows that the parton distributions are modified in the rar@@vironment. Here [3] we
employ effective field theory (EFT) to investigate the EM@ef by studying nuclear
matrix elements of the twist-two operators which are relateparton distributions and
structure functions via the operator product expansionfikiéethat the universality of
the shape distortion of the EMC effect (the factorisatiorth&fx and A dependencies)
is a model independent result, arising from the symmetri€3@D and the separation
of the relevant scales. Thxdependence d®a(X) is governed by short distance physics,
while the overall magnitude (th& dependence) of the EMC effect is governed by long
distance matrix elements calculable using traditionaleargphysics.

Recently EFT has been applied to the computation of hadmowittix elements of
twist-two operators in the meson and single nucleon seftdr3he approach has also
been extended to analyse the deuteron system [5] and i$yrgaderalised to the multi-
nucleon case. To described the EMC effect observde mhata on isoscalar nuclei, we
consider the normalised, spin singlet, isoscalar twist-tywerators,

where(...) indicates that enclosed indices have been symmetrised add traceless,

DH = (ﬁ“ - ﬁ“) 2 is the covariant derivative arM is the nucleon mass. The matrix
elements of7;°*" in an unpolarised nucleon of momentihtan be parametrised as

(P|OG>HnIP) = (X")qvt - - - Vb, (2)

where the nucleon velocity" = PH/M. It is well known that the coefficientsx™)q
correspond to moments of the isoscalar combination of padistribution functions,
XM, = f_ll dxx"q(x) whereq(x) is the isoscalar quark distribution ag@-x) = —q(x).
V\?e first consider only nucleonic degrees of freedara,(assume that pions are
integrated out of the EFT — they will be reintroduced belomw) perform the standard
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FIGURE 1. Contributions to nuclear matrix elements, labeled (a) ydd# to right. The dark square
represents the various operators in Eq. (3) and the lighdeshallipse corresponds to the nucleAs,
The solid and dashed lines represent nucleons and pionsctesly. The dots in the lower part of the
diagrams indicate the spectator nucleons.

matching procedure in EFT, equating the quark level twigt-bperators to the most
general combinations of hadronic operators of the same stres [4]. The leading
one- and two-body hadronic operators in the matching are

Ot — () 0. INTNL+ aNTN] 4 @

wherev! = V# + ¢/(1/M) is the velocity of the nucleus. Operators involving additib
derivatives are suppressed by powerdlah the EFT power-counting and we have only
kept the SU(4) (spin and isospin) singlet two-body operattine above equation as the
other independent two-body operatgfo - - - vHn (NTTN)Z, IS suppressed [3]. Three- and
higher- body operators also appear in Eq. (3), however nigalavidence from other
EFT calculations indicates that these contributions aneiggly small [6].

Nuclear matrix elements Wc’i""““” give the moments of the isoscalar nuclear parton
distributions,ga(x). The leading order (LO) and the next-to-leading order (NcG)-
tributions to these matrix elements are shown in Fig. 1(d)Hb), respectively. For an
unpolarized, isoscalar nucleus,

<Xn>q\A = V“O---V“”<A|ﬁé‘0"'“”|A> (4)
= ()glA+ (Alan(NTN)Z|A)],

where we have usetA|NTN|A) = A. Notice that if there were no EMC effect, tlog
would vanish for alh. Also ag = 0 by charge conservation. From Eq. (4) we see that

XN xm
( >q|A 1 / < >q|A 1) = ﬁ (5)
A(XN)q A(XM)q Om
is independent oA which has powerful consequences. In all generality, thecalar
nuclear quark distribution can be written as

da(X) = Ala(x) +g(x A)]. (6)
Taking moments of Eq. (6), Eq. (5) then demands thaixtdependence anél depen-
dence ofg factorise,
a(x.A) =g (A), (7)

with
G (A) = (A(NN)?|A) /AN, (8)



andg(x) satisfying
1 A

Mo is an arbitrary dimensionful parameter . Crossing symmeittates that the even
and odda, separately determine the nuclear modifications of valendetatal quark

distributions. These results apply to any isoscalar coattmn of parton distributions
includingF(x) for isoscalar nuclei. Thus our result implies that

A

RAX) = g = L+ 0009 (A) (10)

which says that the EMC effect (the deviationR{(x) from unity) has an universal
shape described ., (x) while the magnitude of deviatiof(A), only depends oA.

The above analysis gives a simple explanation of the obdammesersal shape of
the EMC effect, or equivalently, the factorisation @(fx,A). The key to establishing
this factorisation is that other sources of nuclear modificacontributing to the right-
hand side of Eq. (3) must be suppressed (higher order in tA§ Eifch that theA
independence of Eq. (5) can be established. We stress #hattiorisation persists when
pions are included in our analysis. In Fig. 1, examples ofdghding pionic contributions
are shown. The various single-nucleon diagrams, such a4 (& simply renormalise
the nucleon momentgx™)q, without contributing to the EMC effect. Two- and more-
nucleon diagrams such as those in Fig. 1(d) and 1(e) cotdrtbuthe EMC effect, but
only at N°LO and higher (see Ref. [3] for explicit calculations). Qtlentributions
that could upset the factorization include a two-body ofmerahich is similar to that in
Eq. (3) but with two more derivatives. However this operatiso contributes at §LO.
Consequently, the universality of the EMC effect is presdito good accuracy. For large
X it is clear that the factorisation must break down (simplgsider the regiox > 2 in
which only three- and higher- body operators contributeuth the structure function
is very small in this region anyway.

It is clear from Eq. (8) that/(A) is governed by long distance physics which can
be computed using a traditional, non-relativistic nuclglaysics approach. Information
on the shape distortion functiog(x) is encoded in the short distance parametgrs
associated with the strength of the two-body currents. Gmeeither fix theay, from
experimental data (to determine ath, data onFj\(x) and F{\(x) are required) or
calculate/NN|g£° " |NN) in two nucleon systems to extract them. The latter approach,
however, is intrinsically non-perturbative and thus regsiiattice QCD [7, 3].

In Figure 2 we present simple fits to the world data on the Rfjcx). We choose the
simple parameterisation

o5 (X) = (a+byx+cex+dx®)(1-x)f, @A) =1-A"13 (11)

though other similar forms also work. This five parameterdgaibes the data well in
both the small and largeregions, giving gx2 per degree of freedom of 1.4. Whilst
these fits do not include the (weak) scale dependence of thgtbay show consistency
with factorisation.
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FIGURE 2. Fits to nucleaRa(X) data.

Similar techniques can also be used to study nuclear matiifitssof the isovector and
spin-dependent parton distributions. Comparable fesdtions are expected in EFT. In
the isovector case this factorisation can be tested; oneittaar consider the difference
betweenF,’s in (Z,N) = (n+m,n) and (n,n+ m) mirror nuclei [8] and compare it
with F,’ — FJ), or disentangleua(x) and da(x) with the upcoming neutrino-nucleus
experiment, MINERA [9]. For spin dependent PDFs, experimental tests are elglik
Finally, EFT analysis of off-forward matrix elements of thame twist-two operators
leads to information about nuclear effects in generaligetbp distributions [3].
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