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Abstract. Using effective field theory, we investigate nuclear modification of nucleon parton dis-
tributions (for example, the EMC effect). We show that the universality of the shape distortion in
nuclear parton distributions (the factorisation of the Bjorkenx and atomic number (A) dependence)
is model independent and emerges naturally in effective field theory. We present simple fits to ex-
perimental data that incorporate this factorisation.
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The 1983 European Muon Collaboration’s (EMC) observation [1] of the deviation
of the ratioRFe(x) of F2(x) structure functions in iron and deuterium in deep inelastic
scattering (DIS) has provoked much analysis and discussionover the years [2] since it
shows that the parton distributions are modified in the nuclear environment. Here [3] we
employ effective field theory (EFT) to investigate the EMC effect by studying nuclear
matrix elements of the twist-two operators which are related to parton distributions and
structure functions via the operator product expansion. Wefind that the universality of
the shape distortion of the EMC effect (the factorisation ofthe x andA dependencies)
is a model independent result, arising from the symmetries of QCD and the separation
of the relevant scales. Thex dependence ofRA(x) is governed by short distance physics,
while the overall magnitude (theA dependence) of the EMC effect is governed by long
distance matrix elements calculable using traditional nuclear physics.

Recently EFT has been applied to the computation of hadronicmatrix elements of
twist-two operators in the meson and single nucleon sectors[4]. The approach has also
been extended to analyse the deuteron system [5] and is readily generalised to the multi-
nucleon case. To described the EMC effect observed inF2 data on isoscalar nuclei, we
consider the normalised, spin singlet, isoscalar twist-two operators,

O
µ0···µn
q = qγ(µ0iDµ1 · · · iDµn)q/

(
2Mn+1) , (1)

where(...) indicates that enclosed indices have been symmetrised and made traceless,
Dµ = (

−→
D

µ −←−D µ
)/2 is the covariant derivative andM is the nucleon mass. The matrix

elements ofOµ0...µn
q in an unpolarised nucleon of momentumP can be parametrised as

〈P|Oµ0...µn
q |P〉= 〈xn〉qṽµ0 · · · ṽµn , (2)

where the nucleon velocitỹvµ = Pµ/M. It is well known that the coefficients〈xn〉q
correspond to moments of the isoscalar combination of parton distribution functions,
〈xn〉q =

∫ 1
−1 dxxnq(x) whereq(x) is the isoscalar quark distribution andq(−x) =−q(x).

We first consider only nucleonic degrees of freedom (i.e., assume that pions are
integrated out of the EFT – they will be reintroduced below) and perform the standard



FIGURE 1. Contributions to nuclear matrix elements, labeled (a) to (e) left to right. The dark square
represents the various operators in Eq. (3) and the light shaded ellipse corresponds to the nucleus,A.
The solid and dashed lines represent nucleons and pions respectively. The dots in the lower part of the
diagrams indicate the spectator nucleons.

matching procedure in EFT, equating the quark level twist-two operators to the most
general combinations of hadronic operators of the same symmetries [4]. The leading
one- and two-body hadronic operators in the matching are

O
µ0...µn
q = 〈xn〉qvµ0 · · ·vµnN†N[1+αnN†N]+ · · · , (3)

wherevµ = ṽµ +O(1/M) is the velocity of the nucleus. Operators involving additional
derivatives are suppressed by powers ofM in the EFT power-counting and we have only
kept the SU(4) (spin and isospin) singlet two-body operatorin the above equation as the
other independent two-body operator,vµ0 · · ·vµn

(
N†τN

)2
, is suppressed [3]. Three- and

higher- body operators also appear in Eq. (3), however numerical evidence from other
EFT calculations indicates that these contributions are generally small [6].

Nuclear matrix elements ofOµ0...µn
q give the moments of the isoscalar nuclear parton

distributions,qA(x). The leading order (LO) and the next-to-leading order (NLO)con-
tributions to these matrix elements are shown in Fig. 1(a) and 1(b), respectively. For an
unpolarized, isoscalar nucleus,

〈xn〉q|A ≡ vµ0 · · ·vµn〈A|Oµ0...µn
q |A〉 (4)

= 〈xn〉q[A+ 〈A|αn(N
†N)2|A〉],

where we have used〈A|N†N|A〉 = A. Notice that if there were no EMC effect, theαn
would vanish for alln. Also α0 = 0 by charge conservation. From Eq. (4) we see that

(〈xn〉q|A
A〈xn〉q

−1

)/(〈xm〉q|A
A〈xm〉q

−1

)
=

αn

αm
(5)

is independent ofA which has powerful consequences. In all generality, the isoscalar
nuclear quark distribution can be written as

qA(x) = A [q(x)+ g̃(x,A)] . (6)

Taking moments of Eq. (6), Eq. (5) then demands that thex dependence andA depen-
dence of̃g factorise,

g̃(x,A) = g(x)G (A), (7)

with
G (A) = 〈A|(N†N)2|A〉/AΛ3

0, (8)



andg(x) satisfying

αn =
1

Λ3
0〈xn〉q

∫ A

−A
dxxng(x) . (9)

Λ0 is an arbitrary dimensionful parameter . Crossing symmetrydictates that the even
and oddαn separately determine the nuclear modifications of valence and total quark
distributions. These results apply to any isoscalar combination of parton distributions
includingF2(x) for isoscalar nuclei. Thus our result implies that

RA(x) =
FA

2 (x)

AFN
2 (x)

= 1+gF2(x)G (A), (10)

which says that the EMC effect (the deviation ofRA(x) from unity) has an universal
shape described bygF2(x) while the magnitude of deviation,G (A), only depends onA.

The above analysis gives a simple explanation of the observed universal shape of
the EMC effect, or equivalently, the factorisation ofg̃(x,A). The key to establishing
this factorisation is that other sources of nuclear modification contributing to the right-
hand side of Eq. (3) must be suppressed (higher order in the EFT) such that theA
independence of Eq. (5) can be established. We stress that the factorisation persists when
pions are included in our analysis. In Fig. 1, examples of theleading pionic contributions
are shown. The various single-nucleon diagrams, such as Fig. 1(c), simply renormalise
the nucleon moments,〈xn〉q, without contributing to the EMC effect. Two- and more-
nucleon diagrams such as those in Fig. 1(d) and 1(e) contribute to the EMC effect, but
only at N3LO and higher (see Ref. [3] for explicit calculations). Other contributions
that could upset the factorization include a two-body operator which is similar to that in
Eq. (3) but with two more derivatives. However this operatoralso contributes at N3LO.
Consequently, the universality of the EMC effect is preserved to good accuracy. For large
x it is clear that the factorisation must break down (simply consider the regionx > 2 in
which only three- and higher- body operators contribute) though the structure function
is very small in this region anyway.

It is clear from Eq. (8) thatG (A) is governed by long distance physics which can
be computed using a traditional, non-relativistic nuclearphysics approach. Information
on the shape distortion functiong(x) is encoded in the short distance parametersαn
associated with the strength of the two-body currents. One can either fix theαn from
experimental data (to determine allαn, data onFA

2 (x) and FA
3 (x) are required) or

calculate〈NN|Oµ0...µn
q |NN〉 in two nucleon systems to extract them. The latter approach,

however, is intrinsically non-perturbative and thus requires lattice QCD [7, 3].
In Figure 2 we present simple fits to the world data on the ratioRA(x). We choose the

simple parameterisation

gF2(x) = (a+b
√

x+ cx+d x2)(1− x) f , G (A) = 1−A−1/3 (11)

though other similar forms also work. This five parameter fit describes the data well in
both the small and largex regions, giving aχ2 per degree of freedom of∼ 1.4. Whilst
these fits do not include the (weak) scale dependence of the data, they show consistency
with factorisation.
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FIGURE 2. Fits to nuclearRA(x) data.

Similar techniques can also be used to study nuclear modifications of the isovector and
spin-dependent parton distributions. Comparable factorisations are expected in EFT. In
the isovector case this factorisation can be tested; one caneither consider the difference
betweenF2’s in (Z,N) = (n + m,n) and (n,n + m) mirror nuclei [8] and compare it
with F p

2 − Fn
2 , or disentangleuA(x) and dA(x) with the upcoming neutrino-nucleus

experiment, MINERνA [9]. For spin dependent PDFs, experimental tests are unlikely.
Finally, EFT analysis of off-forward matrix elements of thesame twist-two operators
leads to information about nuclear effects in generalised parton distributions [3].
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