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Abstract. I describe recent work on inclusion of Pomeron loops in the high energy evolution. In
particular I show that the complete eikonal high energy evolution kernel must be selfdual
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Last year has seen renewed attempts to understand Pomeron loop contributions to
the high energy evolution of hadronic cross sections in QCD. In recent years the study
of the high energy scattering has centered around the so called JIMWLK evolution
equation [1, 2, 3]. It describes the approach of the scattering amplitude to saturation
due to multiple scattering corrections on dense hadronic targets, or in the diagrammatic
language, the fan diagrams. The JIMWLK equation however onlypartially takes into
account the processes whereby the gluons emitted in the projectile wave function at
an early stage of the evolution, are "bleached" by subsequently emitted gluons, or the
so-called Pomeron loops[4],[5],[6],[7],[8].

Recently we have calculated corrections to the JIMWLK equation, which take into
account some finite density effects in the projectile wave function (or equivalently,
resum certain corrections away form the dense limit of the the target)[9]. We have also
derived the evolution equation valid for dilute target, which is the opposite limit to that
considered in JIMWLK[7]. The most striking feature of the tworesults, is that they
appear to be dual to each other. The improved JIMWLK equation is given by[9]
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whereP denotes path ordering with respect tox− and the fieldba
i satisfies the "classical"

equation of motion[9]. The low density limit evolution kernel (KLWMIJ) including the
same type of corrections but in the target wave function derived in [7] is1:
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1 Following the work [7], the same expression has also been obtained in [10] using the effective action
techniques.
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The two kernels are strikingly similar which suggests an intriguing duality between
the high and the low density limits of the evolution kernel.

In this contribution I follow [8] and show that indeed the full eikonal kernel for the
high energy evolution must satisfy the property of self duality. The requirement that the
evolution of the projectile and the target wave functions has the same functional form
coupled with the requirement of Lorentz invariance of the scattering matrix, leads to the
condition that the kernel of the evolutionχ[ρ, δ

δρ ] must satisfy
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, iρ] . (3)

whereρ is the charge density in the target wave function andα is defined by[2, 3]
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I note that from the functional integral point of view this duality has been discussed
earlier in [11].

Consider the general expression for theS-matrix of a projectile with the wave function
|P〉 scattering on a target with the wave function|T 〉[8], where the total rapidity of the
process isY . The projectile is assumed to be moving to the left with rapidity Y −Y0 (and
thus has sizeable color charge densityρ−), while the target is moving to the right with
rapidityY0 (and has largeρ+). We assume that the projectile and the target contain only
partons with largek− andk+ momenta respectively:k− > Λ− andk+ > Λ+. The eikonal
expression for theS-matrix reads

SY =
∫

Dρ+a(x,x−) W T
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whereΣP is theS-matrix averaged over the projectile wave function

ΣP[α] = 〈P|Pei
∫
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whereW T [α] is the weight function representing the target, which is related to the target
wave function in the following way: for an arbitrary operator Ô[ρ̂+]

〈T | Ô[ρ̂+(x)] |T 〉 =
∫

Dρ+a W T [ρ+(x−,x)] O[ρ+(x,x−)] . (7)

The field α(x) is the A+ component of the vector potential in the light cone gauge
A− = 0. This is the natural gauge from the point of view of partonicinterpretation of the
projectile wave function. In the formulae above we use hats to denote quantum operators.



Note that the quantum operatorsρ̂−a(x) and ρ̂+a(x) do not depend on longitudinal
coordinates, but only on transverse coordinatesx. The "classical" variablesα andρ+

on the other hand do depend on the longitudinal coordinatex−. This dependence, as
discussed in detail in [7] arises due to the need to take correctly into account the
proper ordering of noncommuting quantum operators. Thus the ordering of the quantum
operatorsρ̂+ in the expansion of̂O in the lhs of eq.(7) translates into the same ordering
with respect to the longitudinal coordinatex− of ρ+(x−) in the expansion ofO[ρ+(x−)]
in the rhs of eq.(7).

As shown in [7] the functionalW T [α] cannot in general be interpreted as probabil-
ity density, as it contains a complex factor. This factor - the Wess-Zumino term, en-
sures correct commutators between the quantum operatorsρ̂a. In the present derivation
we do not require an explicit form of this term, but the following property which is
implicit in eq. (7) is crucial to our discussion. The "correlators" of the charge density
〈ρa1(x1,x

−
1 )...ρan(xn,x−n )〉 do not depend on the values of the longitudinal coordinates

x−i , but only on their ordering[7].
Note that one can define an analog ofW T for the wave function of the projectile via

〈P| Ô[ρ̂−(x)] |P〉 =
∫

Dρ−a W P[ρ−] O[ρ−(x,x−)] . (8)

With this definition it is straightforward to see thatΣP andW P are related through a
functional Fourier transform. To representΣ as a functional integral with weightW P

we have to order the factors of the charge densityρ̂− in the expansion of eq.(6), and
then endow the charge densityρ̂−(x) with an additional coordinatet to turn it into a
classical variable. This task is made easy by the fact that the ordering ofρ̂ in eq.(6)
follows automatically the ordering of the coordinatex− in the path ordered exponential.
Since the correlators ofρ(x, ti) with the weightW P depend only on the ordering of the
coordinatesti and not their values, we can simply sett = x−. Once we have turned the
quantum operatorŝρ into the classical variablesρ(x−), the path ordering plays no role
anymore, and we thus have

ΣP(α) =
∫

Dρa W P[ρ] ei
∫

dx−
∫

d2xρa(x,x−)αa(x,x−). (9)

We now turn to the discussion of the evolution. The evolutionto higher energy can
be achieved by boosting either the projectile or the target.The resultingS-matrix should
be the same. This is required by the Lorentz invariance of theS-matrix. Consider first
boosting the projectile by a small rapidityδY . This transformation leads to the change
of the projectileS-matrix Σ of the form
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] ΣP[α] (10)

Substituting eq.(10) into eq.(5) we have
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Where the second equality follows by integration by parts. Wenow impose the require-
ment that theS-matrix does not depend onY0 [12]. SinceΣ in eq.(5) depends on the
difference of rapidities, requiring that∂S /∂Y0 = 0 we find thatW should satisfy

∂
∂Y

W T = χ[α,
δ

δα
] W T [ρ+] (12)

Thus we have determined the evolution of the target eq.(12) by boosting the projectile
and requiring Lorentz invariance of theS-matrix. On the other hand the extra energy
due to boost can be deposited in the target rather than in the projectile. How doesW T

change under boost of the target wave function? To answer this question we consider the
relation betweenΣ andW together with the evolution ofΣ. Referring to eqs.(9) and (10)
it is obvious that multiplication ofΣP by α is equivalent to acting onW P by the operator
−iδ/δρ, and acting onΣP by δ/δα is equivalent to multiplyingW P by iρ. Additionally,
the action ofiρ and−iδ/δρ onW P must be in the reverse order to the action ofδ/δα
andα on ΣP. This means that the evolution of the functionalW P is given by

∂
∂Y

W P = χ[−i
δ

δρ
, iρ] W P[ρ] . (13)

Although eq.(13) refers to the weight functional representing the projectile wave func-
tion, clearly the functional form of the evolution must be the same forW T . Comparing
eq.(12) and eq.(13) we find that the high energy evolution kernel must, as advertised,
satisfy the selfduality relation eq.(3). This is the main result.

The selfduality of the kernel is somewhat similar (althoughdifferent in detail) to the
duality symmetry of a harmonic oscillator Hamiltonianp → x, x →−p. One thus hopes
that it may eventually be of help in solving the complete evolution equation, once it is
derived.
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