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Abstract. | describe recent work on inclusion of Pomeron loops in tighténergy evolution. In
particular | show that the complete eikonal high energy @ioh kernel must be selfdual
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Last year has seen renewed attempts to understand Pomepedatributions to
the high energy evolution of hadronic cross sections in Q@Detent years the study
of the high energy scattering has centered around the sedcalMWLK evolution
equation [1, 2, 3]. It describes the approach of the scatiesimplitude to saturation
due to multiple scattering corrections on dense hadrongets, or in the diagrammatic
language, the fan diagrams. The JIMWLK equation however palyially takes into
account the processes whereby the gluons emitted in thegtitejwave function at
an early stage of the evolution, are "bleached" by subselyuemitted gluons, or the
so-called Pomeron loops[4],[5].[6],[7],[8]-

Recently we have calculated corrections to the JIMWLK equatichich take into
account some finite density effects in the projectile wavecfion (or equivalently,
resum certain corrections away form the dense limit of tleetéinget)[9]. We have also
derived the evolution equation valid for dilute target, efhis the opposite limit to that
considered in JIMWLK]7]. The most striking feature of the twasults, is that they
appear to be dual to each other. The improved JIMWLK equasigiven by[9]
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whereZ” denotes path ordering with respecktoand the field? satisfies the "classical”
equation of motion[9]. The low density limit evolution kel KLWMIJ) including the
same type of corrections but in the target wave functiorvedrin [7] is:
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1 Following the work [7], the same expression has also beeairodd in [10] using the effective action
techniques.
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The two kernels are strikingly similar which suggests anigning duality between
the high and the low density limits of the evolution kernel.

In this contribution | follow [8] and show that indeed thelfalkonal kernel for the
high energy evolution must satisfy the property of self dual' he requirement that the
evolution of the projectile and the target wave functions tiee same functional form

coupled with the requirement of Lorentz invariance of thettseing matrix, leads to the
condition that the kernel of the evolutigfip, 5—5p] must satisfy
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wherep is the charge density in the target wave function end defined by[2, 3]
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| note that from the functional integral point of view thisalily has been discussed
earlier in [11].

Consider the general expression for 8amatrix of a projectile with the wave function
|P) scattering on a target with the wave functidn[8], where the total rapidity of the
process i¥. The projectile is assumed to be moving to the left with rapid — Yo (and
thus has sizeable color charge dengity), while the target is moving to the right with
rapidity Yo (and has larg@™). We assume that the projectile and the target contain only
partons with largéc~ andk™ momenta respectiveli~ > A~ andk™ > A*. The eikonal
expression for th&matrix reads
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wherexP is theS-matrix averaged over the projectile wave function

ZP[a] _ <P’ tgzeifdxf [d2xp3(x)ad(x,x7) |P> ' (6)

whereW? [a] is the weight function representing the target, which iates to the target
wave function in the following way: for an arbitrary opera[p |

(TIOB* (] [T) = / Dp W' [p*(x~,)] O[p* (x,x )] (7)
The field a(x) is the AT component of the vector potential in the light cone gauge

A~ = 0. This is the natural gauge from the point of view of partanterpretation of the
projectile wave function. In the formulae above we use l@atlehote quantum operators.



Note that the quantum operatogs 2(x) and p3(x) do not depend on longitudinal
coordinates, but only on transverse coordinatethe "classical" variablea andp™

on the other hand do depend on the longitudinal coordirateThis dependence, as
discussed in detail in [7] arises due to the need to take cityreto account the
proper ordering of noncommuting quantum operators. Thaisttering of the quantum
operatorp™ in the expansion oD in the lhs of eq.(7) translates into the same ordering
with respect to the longitudinal coordinate of p™(x™) in the expansion dD[p™ (x7)]

in the rhs of eq.(7).

As shown in [7] the functiona¥/™ [a] cannot in general be interpreted as probabil-
ity density, as it contains a complex factor. This factor e iWess-Zumino term, en-
sures correct commutators between the quantum opeyaitohs the present derivation
we do not require an explicit form of this term, but the foliagy property which is
implicit in eq. (7) is crucial to our discussion. The "corttels" of the charge density
(P(X1,X] )...p% (Xn, X, )) do not depend on the values of the longitudinal coordinates
X, but only on their ordering[7].

Note that one can define an analog/®f for the wave function of the projectile via
(PIO[p~ ()] [P) = / Dp #WF[p~] O[p~ (x,x )] (8)

With this definition it is straightforward to see that andWP are related through a
functional Fourier transform. To representas a functional integral with weigw®
we have to order the factors of the charge dengityin the expansion of eq.(6), and
then endow the charge densjby (x) with an additional coordinateto turn it into a
classical variable. This task is made easy by the fact tlebthering ofp in eq.(6)
follows automatically the ordering of the coordinatein the path ordered exponential.
Since the correlators gi(x,t;) with the weightw" depend only on the ordering of the
coordinateg; and not their values, we can simply $et x—. Once we have turned the
guantum operatorg into the classical variablgs(x ), the path ordering plays no role
anymore, and we thus have

ZP(G) _ / Dp? WP[p] eifdx*fdzxpa(x,x*)aa(x,x*)' (9)

We now turn to the discussion of the evolution. The evolutmimigher energy can
be achieved by boosting either the projectile or the tais.resultingS-matrix should
be the same. This is required by the Lorentz invariance ofstheatrix. Consider first
boosting the projectile by a small rapididY . This transformation leads to the change
of the projectileS-matrix Z of the form
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Substituting eq.(10) into eq.(5) we have
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Where the second equality follows by integration by parts.ie impose the require-
ment that theS-matrix does not depend orp [12]. SinceZ in eq.(5) depends on the
difference of rapidities, requiring that¥’/dYy, = 0 we find thaWW should satisfy

O W' — via S Wit
Sy W = Xla, 5 W [p'] (12)
Thus we have determined the evolution of the target eq.(LBpbsting the projectile
and requiring Lorentz invariance of tf&matrix. On the other hand the extra energy
due to boost can be deposited in the target rather than inrtjectile. How doedV’
change under boost of the target wave function? To answsegtigstion we consider the
relation betweex andW together with the evolution &. Referring to egs.(9) and (10)
it is obvious that multiplication oE® by o is equivalent to acting ow" by the operator
—i8/8p, and acting oix® by 5/ a is equivalent to multiplyingVF byip. Additionally,
the action ofip and—id/dp onWP must be in the reverse order to the actiordgba
anda on =P. This means that the evolution of the functioWdf is given by
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Although eq.(13) refers to the weight functional represgnthe projectile wave func-
tion, clearly the functional form of the evolution must be tame folV'. Comparing
eg.(12) and eq.(13) we find that the high energy evolutiomélemust, as advertised,
satisfy the selfduality relation eq.(3). This is the maisuié

The selfduality of the kernel is somewhat similar (althoulifferent in detail) to the
duality symmetry of a harmonic oscillator Hamiltonipn- X, X — —p. One thus hopes
that it may eventually be of help in solving the complete atioh equation, once it is
derived.
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