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Abstract. I carry out a comparison between the gluon distribution obtained from a dipole picture
analysis with structure function data and the standard DGLAP gluon. The former is smaller and
steeper, and I explain the approximations that have resulted in this difference.
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There has recently been a lot of work on calculating/modelling dipole cross-sections
and using the dipole model [1, 2, 3, 4] to fit to structure function data, and a variety
of approaches match data very well. However, the picture of steeply growing quantities
at small x tamed by saturation conflicts with the DGLAP picture of a small/negative
gluon distribution at small x and Q2 [5, 6]. We need to understand why this happens.
My approach is based on the assumption that QCD factorization theory is correct and
quantitative at high Q2 (and not too small x), and then I work back to the dipole cross-
sections. In this way I examine whether the dipole motivated fits are truly quantitative
and whether a large/steep dipole cross-section means a large/steep gluon distribution.
Any evidence for saturation is only a side issue. More details may be found in [7].

Within LO kT -factorization theory the γ
�
p cross-section can be written as [8]
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�
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�
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where f
�
x � k2 � is the unintegrated gluon distribution. In the limit x � 0, i.e. LO in the

kT -factorization theory [9], this formula can be simplified. Integrating over z and p
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Taking the double Mellin transformation � dQ2Q2 � 2γ and � dxxN we obtain,
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x � k2 � is the integrated gluon distribution. If g
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where γ
�
αS

� N � is a positive quantity, e.g. in LO BFKL [10] γ
�
x ��� x � 2 	 4x4 � 2x6 �

17x7 ������� 	



Alternatively, taking a Fourier transformation with respect to p, with r the conjugate
variable, integrating over p2 and z, and letting x � 0 one can equivalently write
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3
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k4 αSf
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Taking the Mellin transformations leads to
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So the effective coefficient function for the hard cross-section hi
�
γ
�
αS � N ��� is the product

of a photon-dipole part hid
�
γ
�
αS � N ��� and a dipole-gluon part hdg

�
γ
�
αS � N ��� , both of

which are calculable. For dF2
� d lnQ2 [11], expanding in powers of γ
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hdg
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� N ��� 1 � 0 	 07γ � 1 	 05γ2 � 3 	 77γ3 � 4 	 94γ4 � 6 	 53γ5 ������� 	
This leads to a steep growth of dF2

� d lnQ2 relative to the gluon, but this is all generated
by the dipole-gluon cross-section, rather than the photon-dipole coefficient. Indeed,
taking the simple Golec-Biernat Wüsthoff model [12] within this picture we find that
a flat σ̂

�
x � r2 � comes from a valence-like xg

�
x � Q2 � and fg

�
x � k2 � .

In order to see how this works out in practice I perform a fit to data from the starting
point of a well-defined gluon distribution that has the same shape in x and Q2 as a
standard LO or NLO gluon distribution and for Q2 � Q2

0 evolves in a quantitatively
correct way. Clearly for Q2 � Q2

0 the evolution needs to be modified. In essence I just
replace Q2 by Q2 � Q2

0. αS
�
µ2 � is also modified in the same way. This expression for the

gluon is converted into a dipole cross-section using
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�
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� 2π

3
� d2k

k4 αS
�
k2 � f

�
x � k2 � � 1 � J0

�
kr ��� �

and put into a fit to data. The comparison of the gluon and the resulting dipole cross-
section is shown in fig. 1. Clearly the dipole cross-section is generally steeper, particu-
larly comparing Q2 � 0 	 2GeV2 with r � 10GeV � 1.

There are various details of the fit to consider. In reality 3 types of diagram contribute.
A gluon can radiate gluons before entering into the scattering, or a quark can fluctuate
into a gluon which enters, or a quark can scatter directly off the photon. In the LO kT -
factorization theorem the first two processes combine as fg

�
x � k2 � � 4 � 9 fS

�
x � k2 � , i.e. the

quark also contributes to the dipole cross-section. For the last process I include a term
f � Q2 � � Q2 � Q2

0
� , where f is free (and in practice very small). Another very important

issue is heavy quarks. These are often ignored in dipole fits, but charm constitutes about
40% of dF2

� d lnQ2 for Q2 � m2
c . Its omission leads to σ̂

�
x � r2 � and g

�
x � Q2 � being up to

5/3 times too big. Since saturation corrections are ∝ g2 � x � Q2 � they can be enormously
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FIGURE 1. Comparison of xg � x � Q2 � at various Q2 with σ̂ � x � r2 � at various r

exaggerated. To check the consequences of ignoring charm I performed a DGLAP fit
without the charm contribution to F

�
x � Q2 � . The gluon and αS are bigger, but also the

global fit is terrible: χ2 � 2 per point for 2000 points. One cannot get dF2
� d lnQ2

consistently correct at all. Hence, NLO and NNLO DGLAP are good enough and
constraining enough to determine that charm has to be there. This suggests that one
should be suspicious of good qualitative results present without heavy quarks. They
should really be wrong until corrected. In my fit I use mc

� 1 	 3GeV.
I fit H1 [13], ZEUS [14] and E665 [15] data from 0 	 5GeV2 � Q2 � 50GeV2. The

fit does not work for Q2 � 0 	 5GeV2, perhaps suggesting saturation. The quality of fit,
χ2 � 1 	 1 per point, is very good for 3 different data sets. In fig. 2 the resulting dipole fit
gluon is compared to the MRSTNLO gluon. It is approximately 0 	 65 � 0 	 75 of the size.
It should really be compared to g

�
x � Q2 � � 4 � 9 fS

�
x � Q2 � . The biggest change is at high

x, and the factor is now 0 	 5 � 0 	 65. The dipole gluon does not match onto the standard
DGLAP gluon at high Q2. At low Q2 it is much smaller than the DGLAP gluon at
moderate x but eventually becomes bigger at very small x.

This relative behaviour comes from the effective coefficient functions/splitting
functions. Consider dF2

� d lnQ2 controlled by γDIS � αS
�
Q2 � � N � . For my model

γgg
�
αs
�
Q2 � � N ��� ᾱs

�
Q2 � � 1 � N � 1 � (i.e. correct for DGLAP). This means that

γDIS
dip

�
αS

�
Q2 � � N ��� αS

�
Q2 � 2N f

6π

�
1 � 2 	 17ᾱS

�
Q2 � � 1

N
� 1 � � 2 	 30ᾱ2

S
�
Q2 � � 1

N
� 1 � 2� ����� � 	

At highish Q2 and moderate x the first two terms are dominant. The exact result is

γDIS
exact

�
αS

�
Q2 � � N � � αS

�
Q2 � 2N f

6π

�
1 � 1 	 08N � ����� � 2 	 17ᾱS

�
Q2 � � 1

N
� 3 	 05 � �����	� � ����� � 	
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FIGURE 2. Comparison of dipole inspired gluon and standard gluon at Q2 � 50GeV2

The first terms are much bigger in the dipole approach, leading to a smaller gluon at all x,
and the difference in dipole and DGLAP gluons is mainly due to these effective splitting
functions. This is verified by modifying the DGLAP splitting functions in a normal
global fit, resulting in a dipole-like gluon [7]. Hence, the good fit at Q2 � 20 � 50GeV2

using the dipole model is achieved with a wrong gluon. But the terms in the splitting
function are by no means negligible at Q2 � 1GeV2 – the error in the

� �
αS

� and
� �

α2
S
� evolution is more important as gluons get flatter. The DGLAP gluons are not

accurate here, but the dipole fits are also incorrect. More sophisticated (beyond LO kt-
factorization theory) calculations are needed for semi-quantitative results. But the simple
dipole picture also needs extension beyond LO kt-factorization theory.
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