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Abstract. In this talk I discuss the high energy asymptotics of QCD scattering, and its similarity to a
reaction–diffusion process. I also discuss detailed numerical studies of the mean field approximation
to this picture, i.e., the Balitsky–Kovchegov equation.
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Perturbative QCD, in the form of the BFKL equation, predicts that in the high energy
(small-x) limit, cross sections rise as a power of the center of mass energy. This rise is
not compatible with unitarity of the S-matrix when extrapolated to very high energies.
The BFKL equation is a linear evolution equation; the limits set by unitarity requires the
introduction of non-linear terms in the evolution equation. The simplest such evolution
equation is the Balitsky–Kovchegov (BK) equation [1].

More involved QCD evolution equations exist; they are known as the Balitsky–
JIMWLK equations. Very recently, it has been discovered that there are important effects
that are not accounted for by this set of equations (see [2] and references therein).

A different point of view has recently been emerging, in which high energy QCD is
equivalent to a reaction–diffusion system. First the BK equation was shown [3] to be
in the equivalence class of the Fisher–Kolmogorov–Petrovsky–Piscounov (FKPP) non-
linear partial differential equation, which has so-called traveling wave solutions. This
allowed deriving results for the amplitude and saturation scale as a function of energy.
Then it was realized [4] that the effects neglected in the BK equation can be described
within the equivalence class of the stochastic version of the FKPP equation.

This talk is based on our paper [5] where we wanted first to understand in more detail
how the statistical interpretation of high-energy QCD comes about and then to make
detailed numerical studies of the properties of the mean field approximation (the BK
equation) and of a toy model that captures the important features of high energy QCD.

Let us first discuss the mean field approximation of the full evolution, which yields
the BK equation. The first equation in Balitsky’s hierarchy of coupled equations can be
written as

∂ᾱsY 〈T (k,Y )〉 = K ⊗〈T (k,Y )〉−〈T 2(k,Y )〉, (1)

where L = ln(k2/Λ2), and K⊗ means the action of the BFKL integral kernel. The next
equation in the hierarchy is an equation for the evolution of the correlator 〈T 2(k,Y )〉.
If one approximates this correlator as the factorized form 〈T 2(k,Y )〉 ≈ 〈T (k,Y )〉2 ≡
A2(k,Y ) one gets the BK equation for the mean-field amplitude A:

∂ᾱsY A(k,Y ) = K ⊗A(k,Y )−A2(k,Y ) (2)



Munier and Peschanski showed that this equation is in the equivalence class of the
FKPP equation, ∂tu(x, t) = ∂ 2

x u(x, t)+ u(x, t)− u2(x, t), where x corresponds to L and
t corresponds to Y . This equation has traveling wave solutions for certain conditions on
the initial conditions, see [3]. This means that there is a solution which has a more or
less fixed shape, and under the evolution in time (rapidity), the position of the wave front
moves in space (momentum). Using results from the study of the FKPP equation, they
obtained an expression for the saturation scale as a function of rapidity, and analytical
expressions for the shape of the wave front for momenta above the saturation scale.

In [5], we solved the BK equation numerically and studied the properties of the
solution. In particular we compared the numerical results to the analytical results. In
Fig. 1, we see that there are indeed traveling wave solutions, and that the analytical
results agree very well with the full solution for large rapidities. We also confirm the
prediction that the influence of the initial condition disappears for large Y , so that a
universal propagation speed is approached.
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FIGURE 1. Left: Evolution of the initial condition using the full BK equation. Right: Logarithmic
derivative of the saturation scale d lnQ2

s (Y )/dY obtained from numerical simulations, compared to the
analytical results to two different levels of accuracy.

The stochastic FKPP equation describes physical situations in which objects evolve
by multiplying and diffusing, up to a limiting threshold. The crucial point is that the
QCD parton model has such dynamics [4, 6, 5]. Once this is realized, all mathematical
results obtained in statistical physics can be transposed to high energy QCD [6].

In the dipole picture of high energy scattering, a QCD dipole scatters off a hadronic
target by interacting with one of its quantum fluctuations. The probe effectively “counts”
the partons in this Fock state of the target with transverse momenta k: the amplitude T (k)
for the scattering is proportional to the number of partons n(k).

The wave function of a hadronic object is built up from successive splittings of partons
starting from the valence structure. As one increases the rapidity Y , the phase space for
parton splittings grows and makes the probability for high occupation numbers larger.
In the initial stages of the evolution, the parton density grows diffusively from these
splittings. On the other hand, the number of partons in each cell of transverse phase
space is limited to a maximum number N that depends on the strength of the interaction
of the probe, i.e., on the relationship between T and n. This property is necessary from
unitarity, which imposes an upper bound on the amplitude (e.g. T (k)≤ 1) which, in turn,
results in an upper bound on n(k). This is parton saturation.

Viewed in this way, scattering in the parton model is a reaction–diffusion process. The
rapidity evolution of the Fock states of the target hadron is like the time evolution of a set
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FIGURE 2. Left: Numerical integration of the toy model over 1000 units of time for different values of
N. Right: 1000 realizations of the evolution of the toy model between time 0 and t1 = 2000 (left bunch of
curves), and t2 = 8000 (right bunch of curve). Insert: the average front for these two times.

of particles that diffuse in space, multiply and recombine so that on average there are no
more than N particles on each site. The QCD amplitude T corresponds to the fractional
occupation number u = n/N in the reaction–diffusion model. In the continuum limit,
u obeys the so-called Reggeon field theory equation (which is in the same equivalence
class as the stochastic FKPP equation)

∂tu(x, t) = D∂ 2
x u(x, t)+λu(x, t)−µu2(x, t)+

√

(2/N)u(x, t)η(x, t) , (3)

where η is a Gaussian white noise function. We take this as a model of QCD scattering
at high energy. The model does not give the exact behavior of the scattering, but
should describe its gross features in the saturation limit. The second order differential
operator should be replaced with the BFKL kernel in real QCD. See [5, 7] for a detailed
discussion of the correspondence to QCD.

Eq. (3) describes the scattering off one partonic realization of the target. The ampli-
tude u is a random variable, which fluctuates between different realizations of a scatter-
ing. To get the physical amplitude one must take the average of all realizations.

Taking into account the properties of the noise term leads to a hierarchy of equations
for correlators similar to the Balitsky hierarchy, which, however, has some extra bound-
ary terms that are important (see [5]). The mean field approximation leads, in this case,
to the FKPP equation, in analogy with the BK case.

To study this numerically, we construct a toy model with a number N of particles on
a one-dimensional lattice, that are allowed to jump to the neighboring sites, to multiply,
and to disappear with certain probabilities. This type of model has been extensively
studied in statistical physics [8] and allows straightforward simulation. For the exact
description of the model, see [5]. Here, we just note that the number N corresponds to
1/α2

s in QCD, so the many-particle limit corresponds to small αs.
The left plot in Fig. 2 shows the evolution of one realization of the numerical model

for different N. The fronts have fluctuations around the steady front shape without
fluctuations, with smaller fluctuations for larger N.

The large time velocity of the wave front for a system described by the model (3)
has been shown to be [9] v = v0 − c/ ln2 N, where v0 is the velocity in the absence of
fluctuations, and c is a constant. Fig. 3 shows the velocity of one realization as a function
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FIGURE 3. Instantaneous velocity of the front as a function of time (full fluctuating line) from a
numerical solution of the stochastic evolution equation for N = 106 and N = 108 particles per site.

of time for two different N, showing appreciable fluctuations. The dashed curves show
the analytical predictions; for large times the simulation gets closer to the asymptotic
value; for smaller times the mean field prediction is still good. This also means that
geometric scaling is expected to hold for intermediate times (or rapidities in QCD).

The right plot in Fig. 2, finally, shows the breaking of geometric scaling that arises
from the averaging. Since the position of the front at a fixed time fluctuates between
different realizations, the average will have a different shape than each individual curve.
This is illustrated in the plot at two different times. At the earlier time the breaking is not
so large, but at the larger time it is much more pronounced, as is the spread in position.

Although the mean field approximation seems to remain useful for intermediate,
phenomenologically accessible energies (see also [10]), it is important to understand
the corrections to this picture. The main interest of the statistical approach described
above is to get a simple physical understanding of the fluctuations in the (extended)
Balitsky-JIMWLK equations, and to make it possible to make a simple derivation of the
universal asymptotics of the scattering amplitude at high energy. The simplicity comes
from the reaction–diffusion nature of QCD scattering at high energy.
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