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Overview

About traveling waves

Numerical studies of BK eqguation
Fluctuations and stochastic evolution

[RE, K. Golec-Biernat, S. Munier — in preparation]

NLL corrections to traveling waves [RE — in preparation]
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Introduction to saturation
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e Gluon density grows when Y ~ log1/x grows =
e Gluon recombination possible
e Alternatively, unitarization of dipole amplitude

InQ

e Reduction of cross section for very small = ?
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Balitsky—Kovchegov equation

The BK equation in momentum space is
OyN(k,Y)=a[K@N(kY) - N?(kY)]
where K Is the integral kernel of the BFKL equation.

Formally,
Oy N (k,Y)=a [x(—0)N(k,Y) = N?(k,Y)]
where

{L = log(k?/k3)

x(v) = 2¢(1) — () — (1 —~) (BFKL kernel in Mellin space)



BK equation and traveling waves

o WN(kY)=a|x(—0L)N(k,Y)—-N?k,Y)]
IS a quite complicated integro-differential equation.

e Munier & Peschanski realized that it can be
approximated by expanding the kernel:

1
() = x(9e) + X () (7 = 7e) + 5X" () (7 = )’
which brings the BK equation into the form of the
Fisher—Kolmogorov—Petrovsky—Piscounov (FKPP)
equation

Oyu = O%u + u — u®

(t ~Y and z ~ L = log k?)
e FKPP equation has traveling wave solutions
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Traveling wave fronts

Traveling waves are translating in
space with a fixed shape,

v(t

u(x,t)

u(x,t) = u(x — vt)

X

The position of the front, z(¢) corresponds to log Q*(Y) for
BK so geometric scaling comes natural:

N(L,Y) = N(logk® —log Q(Y)) = N (log(k*/Q5(Y)))

where Q2(Y) is the saturation scale.
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Saturation scale

The saturation scale Q%(Y) is the momentum that separates
the “saturated” region from the “linear” region. It is given by

X(ve)y, 3 3 [_2m 1
Y —logV — %,/ = +0(1)Y
Ve 20 8 T2\ avg vy O

logQ2(Y) = &

v IS the critical y-value — not usual BFKL ~y = 1/2

Determined by | \/'(7v:)7e = x(7¢) | = Y. = 0.627 . ..
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Solution for amplitude

Leading edge

u(x,t)

V(L

Interior

X

The interior region depends on the nonlinearity.
The leading edge shape iIs given by the linearized equation.

2 2\ e log? 2}:_2
N<Z’Y)”10g(@§<y>> (@zkm) P ( zang%gﬁf))

[Munier & Peschanski, hep-ph/0310357]
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General method!

Important: this is much more general than FKPP

e No need to know the shape of the nonlinearity
— The nonlinearity selects the speed of the front, but
this speed can be calculated from the linearized
equation
[See U. Ebert & W. van Saarloos, Physica D 146, 1 (2000) for more details]
e The equation does not have to be a differential equation
— enough to know dispersion relation in Mellin space!
e This is not incompatible with solutions in deep
saturation region (interior region)!

— traveling wave method only gives front shape In
leading edge region!
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Numerical simulation

The traveling wave method gives nice results,
but how well can we trust it?

Solve BK numerically to check traveling wave results
IRE, K. Golec-Biernat, S. Munier, paper in preparation]

Numerically solve the equation

9 NkY) / dk" [K*N(K'Y) — E°N(k,Y) N KN (k,Y)
Y _ — k’2 ]kQ _ k’2] \/4k’4 € k4
— N3(E,Y)

@
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Numerical results

For example, using the McLerran—\Venugopalan (MV) model
as initial condition, in rapidity steps of AY = b:

le+lo T T \J T 35 T T T T
Full BK: Y=0,5...50 —— Full BK: Y=0,5...50 ——
1 — ] 30 b
le-10 1 25
r>-_r 1le-20 />?— 20 F
= <
Z 1e-30 Z 15}
le-40 10
1e-50 | 5 \
1e_6o 1 1 1 1 1 1 0 1 1 1
le-05 1 100000 1e+10 1le+1l5 1l1le+20 1e+25 1e+30 le-05 1 100000 1e+10 1le+l1l5 1e+20 1l1le+25 1e+30
k (GeV) k (GeV)

We clearly have traveling wave front solutions and
approximate geometrical scaling for large rapidities!
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Front shape in leading edge region

What about geometrical scaling? — define reduced front

M(k,Y) =Nk Y) x (B /Q(Y))

— O [ln (%) + Cz} exp (—ﬁ In® (%»

Selects the leading edge; shows diffusive scaling violations

2

y=50 -

Fit analytical
to numerical:

reduced front
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Saturation scale and subasymptotics

2
0log Q:(Y)/0Y
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e Numerical solution agrees with analytic curves
for large rapidities

e For smaller rapidities there are still subasymptotic terms

e (Q%(Y) found by tracking point of fixed amplitude
N(k,Y)=r as Y increases
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Subasymptotics and initial condition

14

McLerran—Venugopalan initial |
condition, curves for
Y =0,1,...,10
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Subasymptotics and initial condition
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McLerran—Venugopalan initial |
condition, curves for
Y =0,1,...,10

step function and Gaussian: of
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Conclusions: numerical simulations

e The analytical results from traveling wave methods

agree very well with the full numerical solution for large
rapidities

e There are subleading terms in Y that depend on the
initial conditions

e Everything | showed was for fixed coupling &
— running coupling works too. ..

e \We have not studied impact parameter dependence
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Two modifications

e Fluctuations

e Next-to-leading corrections
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Fluctuations and stochastic evolution

e The above BK picture is only a mean field picture
e It applies when the number of dipoles is large

# dipoles = n = N/a?

e When n is small, fluctuations become important
n Is discrete = cutoff on amplitude!

e The asymptotic velocity becomes

dnQ2(Y) ax(ye) ar? yex" (1)

dY Ve 2 In*(1/a2)

[lancu, Mueller, Munier]
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Fluctuations and stochastic evolution

e Munier realized that the BK equation is in the
equivalence class of the stochastic FKPP equation. ..

Stochastic BK:
OayT(k,Y) = x(=0L)T(k,Y)=T*(k,Y)+as\/2T(k, Y )n(k,Y)

e \We study a toy model in the same equivalence class
[See also recent paper by G. Soyez]
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NLL corrections to BK equation

e In particular Ciafaloni, Colferal and Salam have
advocated using RG resummed BFKL kernels x(v,w)
with an explicit w-dependence.

e This leads to an NLL-corrected BK eqguation
Oy N = ax(=0L, 0y )N — aN?

e NLL-corrections to nonlinear term neglected. But we
don’t need that term to compute the saturation scale!

e Generalize traveling wave method to this kind of
equation [RE, In preparation]
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NLL corrections to saturation scale

The saturation scale now takes the form

InQ2(Y) = Yy — 2 Iy
: >
Ve Ve

3 27y W we ) 2 1z
Xc/yc /! cC ./ C .

- Xe t2— X+ (—) X

73\/ weY ( T e e C)

where there are two critical constants (v.,w.) determined by
the equations

{X/(Xa We)Ye = X(VesWe) — we X(Ver We)

We = @X(V& wC)
which replace the LL relation x{,(x¢)7. = xo(7c)
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RG resummed kernel

e The simplest NLL corrected kernel is the consistency
constraint [Kwiecinski et al; Andersson et al] where the
argument is shifted:

X(v,w)=9¢1) =y +3%5) -1 -v+5%) (symm)
V(y) = (1 —v+w) (asymm)

<
2
&
[
=
=
|

e Khoze, Martin, Ryskin and Stirling (KMRS) proposed a
model similar to the NLL corrected LL BFKL kernel of
Ciafaloni et al:

l+wAi(w) 1 1+wA(w) 1 heo
X(7,w) = xo0(7) - T e 1 Xo (7

Let's compare these, and the rapidity veto...
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RG resummed kernels

w = ax(v,w) defines w(v) implicitly — solve numerically:

<2A>(‘v) | g)(v) |
1.75 § 175
15 15
1.25 1.25

1Y 1)
0.75 | 0.75 |
05~ - 05
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e The modified kernels obviously have smaller pomeron
intercepts [ap = w(3)], and they are also wider
— smaller diffusion constant

e \What about the saturation scale?
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Saturation scale

Logaritmic derivative of the saturation scale \;(Y) =

As(Y)

1!
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e Again, asympto
e The NLL correc
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tically constant, but not for small Y'!
tions suppress the leading exponential

growth of the saturation scale but also changes the
approach to asymptotics
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Reduced wave front

Mk, Y) = N(E/Qs(Y),Y) x (k*/Q(Y))™

75" (Q;Y)) o (_451/ a <Q§<2Y>))
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Diffusion constant smaller for NLL kernels.
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Conclusions

The NLL corrections — kernel non-local in both Y and k&
— “rotates evolution”

NLL corrections reduce the saturation scale and the
diffusive spreading of the wave front

It's easy to compute the NLL corrections for fixed
coupling

Running coupling is a little more difficult
Work in progress
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