

Precision Measurements of W and Z Boson

Production at the Tevatron

Jonathan Hays Northwestern University On Behalf of the CDF and DØ Collaborations

XIII International Workshop on Deep Inelastic Scattering, Madison WI, USA 27th April to May 1st 2005

- Fermilab, CDF and DØ
- Acceptance and PDF uncertainties
- W and Z production cross-sections

- R Cross-section ratio measurement
- The future a new way to measure R
- Summary

Tevatron, CDF and DØ

Delivered luminosity ~ $0.8 fb^{-1}$

proton anti-proton collider 1.96 TeV, 396 ns bunch spacing Design lumi: 8fb⁻¹ by 2008

Motivation

Precise measurements allow tests of Standard Model predictions

NNLO @ $\sqrt{s} = 1.96$ GeV: (Stirling, van Neervan) $\sigma_W \times Br(W \rightarrow l\upsilon) = 2687 \pm 54$ pb $\sigma_Z \times Br(Z \rightarrow ll) = 251.3 \pm 5.0$ pb $R(\sigma_W \times Br(W \rightarrow l\upsilon) / \sigma_Z \times Br(Z \rightarrow ll)) = 10.69 \pm 0.08$

Can be used as a "standard candle" to measure or cross-check luminosity

Ratio of cross-sections give indirect measurement of W width

$$R = \frac{\sigma_{W} \times Br(W \to l\nu)}{\sigma_{Z} \times Br(Z \to ll)} = \frac{\sigma_{W}}{\sigma_{Z}} \frac{\Gamma_{Z}}{\Gamma_{Z \to ll}} F_{W \to lk}$$
 SM: 226.4±0.3MeV
SM: 3.361±0.024

PDF Uncertainties

> Generally arise in the estimation of the acceptance for these measurements 0.50.450.450.4

- Involves counting those events you didn't see
- Need good Monte-Carlo description of the boson production and decay and detector effects

DØ uses a brute force approach

Generate lots of MC for each CTEQ eigenvector set

Calculate error on observable using prescription in:

J.Pumplin et al, JHEP 310 046 (2003)

CDF uses re-weighting technique Parameterize acceptance Generate large ensemble of MC Re-weight events to correspond to different PDF eigenvector sets

W and Z Boson Production

Look at the leptonic decays of W and Z

Select Z bosons with:

single electron/muon triggers

require two reconstructed leptons

cut on lepton transverse momentum ~ 20 GeV

Hadronic decays too difficult to pick out from the background

Select W bosons with:

single electron/muon triggers

standard lepton identification cuts

```
cut on lepton transverse momentum ~20GeV
```

cut on missing transverse momentum ~20 Gev

W Production DØ

For W→ev large contributions to systematics in acceptance calculation MC-tuning: 1.13%, ID-Eff: 1.43 %, PDFs: 1.41%

$$\sigma_{W} \times Br(W \rightarrow ev) = 2865.2 \pm 8.3_{(stat)} \pm 62.8_{(sys)} \pm 40.4_{(pdf)} \pm 186.2_{(lum)} \mu \sigma_{W} \times Br(W \rightarrow \mu v) = 2989 \pm 15_{(stat)} \pm 81_{(sys)} \pm 194_{(lum)} pb$$

W Production at CDF

 $\sigma_{W}(e+\mu) = 2775 \pm 10_{(stat)} \pm 53_{(sys)} \pm 167_{(lum)}pb$

Dominant contributions to systematics from acceptance (PDFs) and the efficiencies

Z Production at DØ

 $\sigma_{Z} \times Br(Z \rightarrow ee) = 264.9 \pm 3.9_{(stat)} \pm 8.5_{(sys)} \pm 5.1_{(pdf)} \pm 17.2_{(lum)} pb$

Large contributions to systematics from acceptance (PDF 1.7%) and understanding detector efficiencies

 $\sigma_{Z} \times Br(\gamma^{*}/Z \rightarrow ee) = 255.8 \pm 3.9_{(stat)} \pm 5.5_{(svs)} \pm 15.4_{(lum)} pb$ PRL 94 091803 (2005) ; 2/A 9 9 160 140 140 ⊒ **Central-Central** 220 - Central-Central Ζ→μμ DATA (1371) $\gtrsim 200 \vdash \bullet Z \rightarrow ee DATA (1730)$ Ζ→μμ МС $\textcircled{0}180 \vdash \square Z \rightarrow ee MC$ CDF Run II Preliminary CDF Run II Preliminary `ര160⊧ L dt = 72.0 pb⁻¹ 5140⊧ L dt = 72.0 pb⁻¹ 120 Z→ee 120╞ Z→µµ 100 ∫L = 72pb⁻¹ 0 80 60 80 **40** 60 20 50 60 70 80 90 100 110 120 130 M_{ee} (GeV/c²) 40 **ă**0 20 Mass window: $66 \le M_7 \le 116 \text{ GeV}$ 40 50 60 70 80 90 100 110 120 130 M_{III} (GeV/c²) $\sigma_Z \times Br(\gamma^*/Z \rightarrow \mu\mu) = 248.0 \pm 5.9_{(stat)} \pm 7.6_{(sys)} \pm 14.9_{(lum)} pb$ Dominant contributions to

$$\sigma_{z}(e+\mu) = 254.9 \pm 3.3_{(stat)} \pm 4.6_{(sys)} \pm 15.2_{(lum)} pb$$

systematics from acceptance

(PDFs) and the efficiencies

Benchmark analyses for all high pT lepton analyses

Systematics limited measurements ~2-3% level (excl luminosity)

Dominant contributions from acceptance (large contributions from PDF uncertainties) and efficiencies

Cross-section Ratios

Ratio of cross-sections provides an indirect measurement of the W width

$$R = \frac{\sigma_{W} \times Br(W \to l\nu)}{\sigma_{Z} \times Br(Z \to ll)} = \frac{\sigma_{W}}{\sigma_{Z}} \frac{\Gamma_{Z}}{\Gamma_{Z \to ll}} \frac{\Gamma_{W \to l\nu}}{\Gamma_{W}}$$

Luminosity essentially cancels in ratio Efficiencies and acceptance also cancel to a degree \rightarrow reduced errors

DØ preliminary:

$$R(e) = 10.82 \pm 0.16_{(stat)} \pm 0.25_{(syst)} \pm 0.13$$

CDF PRL 94 091803 (2005)

R(e+ μ) = 10.92 ± 0.15_(stat) ± 0.14_(syst) Γ_{W} = 2.079 ± 0.042 GeV

K.Copic (UMich), V.Martin, M.Schmitt (Northwestern)

Presented recently at APS (K.Copic) and joint CTEQ/CDF/DØ W/Z Workshop (D.Waters)

(http://www.uic.edu/~varelas/wz_workshop.html)

category	Electrons	muons	acceptance
Central value	10.82 ± 0.16	11.12± 0.18	
PDF	0.07	0.09	
Material	0.03	0.00	
Recoil	0.03	0.04	
Efficiency	0.12	0.11	
Backgrounds	0.04	0.09	

- Select W and Z events with identical cuts
 - Require a single lepton passing trigger and full lepton ID selection
 - Fit the transverse momentum (for μ) or transverse energy (for e) spectra to determine relative fraction of W or Z in sample

A New Way to Measure R at CDF

- Efficiencies now cancel almost exactly in the ratio
- Construct samples carefully \rightarrow acceptances very similar for W and Z
- Evaluate PDF uncertainties on the acceptance using 40 CTEQ PDF eigenvector sets and re-weighting method

Removing cuts to make selections identical \rightarrow increased backgrounds

- Cut on hadronic recoil
 - softer for W and Z events compared with QCD
 - Works well with muons
 - For electrons need to be careful to avoid biases
- Need well understood background shapes for template fit

- Only sensitive to the difference in the acceptance for W and Z
- For a typical pair of PDF error sets the difference is very small
 - Though for a couple the differences are significant (eg 37,38)
- Estimated systematics from PDFs on $R \le 0.5\%$

A New Way to Measure R at CDF

Trading one set of systematics:

- Efficiency
- PDFs in acceptance

For:

- statistical errors in the template fit¹⁰⁰⁰
- Systematics from quality of Monte-Carlo description

 Initial studies of the sensitivity estimate with 400-500 pb⁻¹ can achieve similar statistical power to current measurement (72pb⁻¹) but with significantly reduced systematics!

Summary

Presented results on the precise measurement of W and Z boson production DØ preliminary

 $\sigma_W \times Br(W \rightarrow ev) = 2865.2 \pm 8.3_{(stat)} \pm 62.8_{(sys)} \pm 40.4_{(pdf)} \pm 186.2_{(lum)} pb$ $\sigma_{W} \times Br(W \rightarrow \mu \upsilon) = 2989 \pm 15_{(stat)} \pm 81_{(sys)} \pm 194_{(lum)} pb$ $\sigma_{Z} \times Br(Z \rightarrow ee) = 264.9 \pm 3.9_{(stat)} \pm 8.5_{(sys)} \pm 5.1_{(pdf)} \pm 17.2_{(lum)} pb$ $\sigma_{Z} \times Br(Z \rightarrow \mu\mu) = 291 \pm 3.0_{(stat)} \pm 6.9_{(sys)} \pm 18.9_{(lum)} \text{ pb}$ $R(e) = 10.82 \pm 0.16_{(stat)} \pm 0.25_{(syst)} \pm 0.13_{(pdf)}$

Results systematics limited at 2-3% level (+6.5% lumi)

CDF PRL 94 091803 (2005)

$$\begin{split} \sigma_{W}(e+\mu) &= 2775 \pm 10_{(stat)} \pm 53_{(sys)} \pm 167_{(lum)} pb \\ \sigma_{Z}(e+\mu) &= 254.9 \pm 3.3_{(stat)} \pm 4.6_{(sys)} \pm 15.2_{(lum)} pb \\ R(e+\mu) &= 10.92 \pm 0.15_{(stat)} \pm 0.14_{(syst)} \\ \Gamma_{W} &= 2.079 \pm 0.042 \text{ GeV} \end{split}$$

Dominant systematics come from acceptance and efficiency - includes large contributions from PDF uncertainties

Which underlying physical aspects of the PDFs contribute to uncertainties? Which measurements (e.g. W charge asymmetry, inclusive jets) at the Tevatron can help?

Though we may come up with clever ideas to reduce systematics, PDF and other production uncertainties could still play a significant role both in these measurements and other precision measurements such as the W boson mass