

## D0 Results in Diffraction



### **Luiz Mundim**

Universidade do Estado do Rio de Janeiro and Fermilab

On Behalf of the D0 Collaboration

Diffraction at Run I
Run II
Diffractive topics
Preliminary results
Forward Proton Detector
Summary



## Run I Results



•Central gaps between jets: Color-Singlet fractions at  $\sqrt{s} =$ 630 & 1800 GeV; Color-Singlet Dependence on  $\Delta \eta$ ,  $E_{\rm T}$ ,  $\sqrt{s}$ (parton-x). PRL 72, 2332(1994); PRL 76, 734 (1996); PLB 440, 189 (1998)



•Observed forward gaps in jet events at  $\sqrt{s} = 630 \& 1800$ GeV. Rates much smaller than expected from naïve Ingelman-Schlein model. Require a different normalization and significant soft component to describe data. Large fraction of proton momentum frequently involved in collision.

PLB 531, 52 (2002)

 $\sqrt{s} = 630 \text{ and } 1800 \text{ GeV}$ 

Observed jet events with forward/backward gaps at

•Observed W and Z boson events with gaps: measured fractions, properties first observation of diffractive Z.

PLB 574, 169 (2003)



# Run II Improvements



- ✓ Larger luminosity allows search for rare processes
- $\sim$  Higher  $E_T$  jets allow smaller systematic errors
- ✓ Integrated Forward Proton Detector (FPD) allows accumulation of large hard diffractive data samples
- $\checkmark$  Measure  $\xi$ , t over large kinematic range



## Diffractive topics



#### 10 PhD Students

- ➤ Diffractive Z (gap)
- **≻Diffractive W,Z**
- > Diffractive forward jets
- **→ Diffractive heavy flavor**
- **▶** Diffractive structure function
- >Double pomeron+jets
- >Diffractive pomeron+jets
- >Inclusive double pomeron
- > Diffractive jets



## Current diffractive triggers



### Jet +Gap(s):

15 GeV jet + 1 or 2 gaps; 2 gap trigger has low prescale up to intermediate lums

45 GeV jet + 1 or 2 gaps; prescale of 2 for single gap up to 60E30, double gap unprescaled at all lum

### $J/\Psi + Gap(s)$ :

2 low p<sub>T</sub> muons+1 or 2 gaps; unprescaled at all luminosity

**Elastic and double pomeron triggers (FPD):** 

Recently added elastic global list trigger, previously restricted to special runs

These triggers are being used to search for exclusive dijets and exclusive  $\chi c$  (along with many other diffractive topics), a key step towards validating diffractive Higgs models.



# Rapidity Gap Trigger



### **Luminosity Monitor (LM)**

- Scintillating detector
- $2.7 < |\eta| < 4.4$
- Charge from wedges on one side are summed:
   Detector is on/off on each side, North and South



6



## Rapidity Gap Selection







# Diffractive Z (gap tag)



Event Selection:  $Z \rightarrow \mu + \mu$ - Events from 2003 data sample Two good ( $P_T > 15 GeV$ ) oppositely charged muons (at least one isolated), cosmic ray rejection





## Diffractive Z candidate





 $Z \rightarrow \mu\mu$  event



## Forward Proton Detector (FPD)







- ► 9 momentum spectrometers comprised of 18 Roman Pots
- ► Scintillating fiber detectors can be brought close (~6 mm) to the beam to track scattered protons and anti-protons
- ► Reconstructed track is used to calculate momentum fraction and scattering angle
- ► Much better resolution than available with gaps alone
- Extend measuments to low values of *t* never before explored at Tevatron energies
- $\triangleright$  Allows combination of tracks with high- $p_T$  scattering in the central detector

DIS2005 – April, 2005



## Forward Proton Detector



- All 6 castles with 18 Roman pots comprising the FPD were constructed in Brazil, installed in the Tevatron in fall of 2000, and have been functioning as designed.
- 20 detectors built over a 2+ year period at UTA
- In 2001-2002, 10 of the 18 Roman pots were instrumented with detectors. During the fall 2003 shutdown the final eight detectors and associated readout electronics were installed.







## Forward Proton Detector





- ➤ 6 layers per detector in 3 planes and a trigger scintillator
- U and V at 45 degrees to X, 90 degrees to each other
- U and V planes have 20 fibers, X planes have 16 fibers
- Each channel filled with four fibers
- Layers in a plane offset by ~2/3 fiber. Fibers in each layer of a plane taken together define a segment.
- 2 detectors in a spectrometer. Segments are used to reconstruct hits.



## Detector hit resolution





- Starting in January 2004, all 18 detectors regularly inserted (dipoles since February 2003)
- Resolutions calculated by the difference of the x value of a hit calculated from u/v segments compared to the x value of the x segment show that most of the detectors are working as expected

DIS2005 – April, 2005 13

Xuv-Xux

D1I

-3

0

D21

Xuv-Xux



# FPD dipole data











## Summary



- > FPD being calibrated and working as planned.
- **Level 1 FPD triggers being commissioned (new data samples).**
- Comparing measurements with FPD tag vs. Gap tag yields new insight into processes
- > Many diffractive physics measurements already in progress.
- ► Get your predictions of if/where the dip(s) will be for Single Diffraction, Double Pomeron Exchange + Elastic.