H1 F2D and Diffractive Charged Current Results

Paul Laycock – University of Liverpool Diffraction and Vector Mesons Working Group

Diffraction at H1 $ep \rightarrow eXp$

Forward Proton Spectrometer

Large Rapidity Gap in H1

Measure Leading Proton No proton dissociation Measure the *t* dependence Low detector acceptance Require Large Rapidity Gap Kinematics measured from X system Integrate over t and M_Y High detector acceptance \rightarrow precision

Diffractive kinematics

 Q^2 = Virtuality of photon

= momentum transfer at *e* vertex

 β = fractional momentum of struck parton relative to diffractive exchange

 x_{IP} = fractional momentum of the diffractive exchange relative to the proton

= momentum transfer at p vertex

$$\sigma_{r}^{D(3)}(\beta, Q^{2}, x_{IP}) = \frac{\beta Q^{4}}{4\pi\alpha^{2}(1 - y + y^{2}/2)} \cdot \frac{d\sigma_{ep \to e'Xp'}}{d\beta dQ^{2} dx_{IP}}$$
$$= F_{2}^{D(3)} \text{ if } F_{L}^{D(3)} = 0$$

Rapidity Gap data

$$\sigma_r^{D(3)}(\beta, Q^2, x_{IP}) = \frac{\beta Q^4}{4\pi \alpha^2 (1 - y + y^2/2)} \cdot \frac{d\sigma_{ep \to e' X_{P}}}{d\beta dQ^2 dx_{IP}}$$

Cross-section defined for:

 $M_Y < 1.6 \; GeV, \; |t|^2 < 1.0 \; GeV^2$

Large data sample consisting of three datasets covering the accessible kinematic plane with high precision

Also shown is the NLO QCD fit to the data which describes the data well, more on that later...

Leading Proton compared with Rapidity Gap selection

For comparison a factor of 1.1 is applied to correct from

$$M_Y = M_p \rightarrow M_Y < 1.6 \ GeV$$

Measurements obtained using the two independent experimental techniques agree well; find equally good agreement with ZEUS leading proton data

Possibility of providing constraints on the proton dissociation correction

Factorisation and Diffraction

QCD Hard Scattering factorisation (Collins factorisation)

$$\sigma(\gamma^* p \to Xp) \approx p_{q/p}(x_{IP}, t; x, Q^2) \otimes \hat{\sigma}_{\gamma^* p}(x, Q^2)$$

At fixed x_{IP} and t diffractive Parton Densities evolve according to DGLAP

Regge factorisation - "Resolved Pomeron model":

Q^2 dependence of the data in x_{IP} bins

 x_{IP} dependence removed by dividing $\sigma_r^{D(3)}$ by flux factor $f_{IP}(x_{IP})$ Different x_{IP} bins agree on Q² dependence across the whole β range

Q^2 dependence of the data at fixed x_{IP}

β dependence of the data at fixed x_{IP}

Diffractive pdfs

Fit assumes x_{IP} factorisation including sub-leading trajectory Fit singlet and gluon components at starting scale of $Q^2_{min} = 3 \text{ GeV}^2$ Singlet well constrained, gluon dominated but large uncertainty at high z

Gluon fraction and F_L at leading twist

H1 preliminary 1.2 ∫dz z g(z,Q²) / ∫dz z [∑+g](z,Q²) **Gluon Momentum Fraction** x_{IP} FL^{D(3)} for 0.01<z<1 0.05 0.8 0.6 0.4 0.05 H1 2002 σ_r^D NLO QCD Fit (exp. error) 0.2 (exp.+theor. error) 0 10² 0.05 10 $Q^2 [GeV^2]$ 10 Gluon-dominated exchange $\rightarrow 75 \pm 15\%$

 F_L large at low Q^2 and low β

A self-consistent picture of diffractive DIS at H1

• Use these diffractive pdfs as input to Monte Carlo to predict exclusive processes

- See talk on DDIS Dijets by Mozer

- See talk on DDIS D* by Beckingham

- Already saw self consistency in inclusive NC analyses (fit to medium Q² data describes lower and higher Q² sets well)
- How about charged current?

CC Events with a Rapidity Gap $ep \rightarrow vXp$

Striking experimental signature:

- missing transverse energy
- large gap in rapidity

(Charged current) (Diffraction)

RST (DMIS) = 20000000 20006080

Analysis Technique

- Same 1999/2000 data set used for high Q² NC analysis → have simultaneous inclusive and diffractive NC and CC analyses
- Use the same forward detector treatment as for the higher statistics NC analysis
- Use similar Monte Carlo treatment as for the NC analysis

Diffractive CC Control Plots

Good description of the data by the RAPGAP simulation (input pdfs are a fit to H1 1994 data)

Main source of contamination is from inclusive CC

Control Plots

Differential diffractive CC cross-sections

Differential cross-sections agree with predictions of NLO QCD fit to the NC data

Total cross-section and ratio to inclusive cross-section

The total CC diffractive cross-section for $Q^2 > 200 \text{ GeV}^2$, y < 0.9 and $x_{IP} < 0.05$: $\sigma_{CC}^{diff} = 0.42 \pm 0.13 \text{ (stat.)} \pm 0.09 \text{ (sys.) pb}$

NLO QCD fit predicts 0.43 ± 0.01 (stat.) pb

Ratio of diffractive to inclusive ($x_{Bj} < 0.05$): $\sigma_{CC}^{diff} / \sigma_{CC}^{inc} = 2.5 \pm 0.8 \pm 0.6 \%$

Summary

- High precision measurements of diffractive DIS analysed using an NLO QCD analysis
- Regge factorisation is a sufficiently good approximation to the data to allow that NLO QCD analysis
- Diffractive pdfs are dominated by the gluon
- Medium Q^2 data fit describes low and high Q^2 NC data well
- Good predictions of measurements of exclusive processes:
 - See talk on DDIS Dijets by M. Mozer
 - See talk on DDIS D* by M. Beckingham
- Charged current events with large rapidity gaps observed and differential cross-sections extracted
- Predictions of the NLO QCD fit to NC data agree well with differential diffractive CC cross-sections