SATURATION 2005 ( mini-review) Eugene Levin, Tel Aviv University DIS'05, April - May 2005 The Goal: Brief review of ups and downs of highdensity QCD approach in the saturation domain - my personal selection Saturation E. Levin 1 Outline: * Saturation at HERA and RHIC? * Reliable predictions for LHC: - Saturation scale; - Modified Balitsky-Kovchegov equation; - Antishadowing effect; - Excess for heavy quark and di-jet production at LHC ; * Theory developments: - Colour dipoles versus B-JIMWLK approach; - Hunt for Pomeron loops; - Saturation and stochastic processes; * Problems, ideas, solutions ... t^ bright future ; Saturation E. Levin 2 What we have learned about saturation at HERA and RHIC Low Q2: Large Q2: 0.1 0.2 0.3 0.4 0.5 0.2 0.4 0.6 0.8 0.5 1 0.5 1 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 HERA * E. Gotsman, E. Levin, M. Lublinsky and U. Maor (2002); * E. Iancu, K. Itakura and S. Munier (2003) Saturation E. Levin 3 A^2 : 10-4 10-2 x Q 2 (GeV2 )1 2 4 31 2 A : 1; B : 1 + 3; C : 1 + 2; D: 1 + 2 + 3 + 4 ; Region 2 ? 2.7 ? A^2/d.o.f. points A^2/d.o.f. points A 0.55 51 0.75 53 B 0.55 55 0.8 58 C 0.75 84 1.2 91 D 0.7 103 1.1 112 Saturation E. Levin 4 dNch/dh W = 130 GeV 0 - 6 % 15 - 25 % 35 - 45 % h 0 100 200 300 400 500 600 700 -5 -4 -3 -2 -1 0 1 2 3 4 5 2( dNch/dh)/Npart W = 130 GeV h < 1 2 - 2.4 3 - 3.4 4 - 4.4 Npart 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50 100 150 200 250 300 350 400 450 dNch/dh W = 200 GeV 0 - 6 % 15 - 25 % 35 - 45 % h 0 100 200 300 400 500 600 700 800 -5 -4 -3 -2 -1 0 1 2 3 4 5 2( dNch/dh)/NpartW = 200 GeV h < 1 2 - 2.4 3 - 3.4 4 - 4.4 Npart 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50 100 150 200 250 300 350 400 450 500 * RHIC Multiplicity ( Kharzeev, Levin & Nardi (2001)) pT (GeV) RCP 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1 2 3 4 5 pT (GeV) RCP 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1 2 3 4 5 p T (GeV) RCP 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1 2 3 4 5 pT (GeV) RCP 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1 2 3 4 5 * RHIC d-A dN/dy (Kharzeev, E.L. and McLerran (2002); Kharzeev, Kovchegov & Tuchin (2004)) Saturation E. Levin 5 Prediction for LHC: Saturation scale Saturation momentumQ s (GeV) Y 1 2 3 4 1 10 6 8 10 12 14 1 - LO BFKL 2 - Our kernel; 3 - NLO BFKL (Durham); 4 - BGW model; Saturation E. Levin 6 Theory progress: Energy dependence ( Munier & Peschanski (2000)) Saturation momentum Qs (GeV) Y 1 2 3 4 1 10 10 2 6 8 10 12 14 1 - High energy behaviour (fixed o""S ); 2 - Low energy corrections (fixed o""S ); 3 - High energy behaviour (running o""S ); 4 - Low energy corrections (running o""S ); Saturation E. Levin 7 Transferred momentum dependence * Phenomenology and models : (Munier,Stasto & Mueller (2001), Munier & Wallon (2003), Kowalski & Teaney (2003)) * Semiclassical approach: (Bondarenko, Kozlov & Levin (2003)) * Numeric solution to BK equation: (Golec-Biernat & Stasto (2003), Gotsman, Kozlov, Levin, Maor & Naftali (2004)) * Analytic approach: (Ikeda and McLerran (2002), Marquet, Peschanski & Soyez (2005)) Q2s(Y ) = q2 exp s, _o""S A^(r^cr)1-r^cr Y - 32(1-r^cr) lnY t^ = (q2/Q20) Q2s(Y , q = 0) Saturation E. Levin 8 B-K non-linear equation: x1x 0 x 1 x0 x2 NN ( x ) ( x12 ) N ( x02 )01 N ( x12 ) . N( x 02 ) @ N (y, ~x01, ~b) @ y = CF o""S 2ij2 Z d 2x2 x 201 x202 x212 t,2N (y, ~x12, ~b - 1 2 ~x02) - N (y, ~x01, ~b) - N (y, ~x12, ~b - 12 ~x02) N (y, ~x02, ~b - 12 ~x12)u"" Saturation E. Levin 9 Deficiencies of B-K equation: * Correct only in LLA approximation of pQCD with BFKL kernel in LO; * The mean field approximation to the JIMWLK equation; * It is not correct in the saturation region; * The region where we can neglect the non-linear corrections should be specified by conditions beyond the BK equation; Saturation E. Levin 10 B-K equation versus NLO BFKL: Nnon-linear term / o""4S s2\Delta BF KL ; Nlinear term / o""2S s\Delta BF KL; with \Delta BF K L = o""S A^LO BF K L + o""2S A^N LO BF K L Correct strategy (theory point of view ): For 1/o""S > y = ln s > 1 N LOBF K Llinear term For y = ln s > (2/o""S ) ln(1/o""S ) N LOBF K Llinear term + Nn-l term For y = ln s > (1/o""2S ) N N LOBF K Llinear term + Nn-l term Saturation E. Levin 11 Our suggestion:( Ellis, Kunszt and Levin 1994) _o""S A^N LO (r^ ) = - ! _o""S A^LO (r^ ) ; !(r^ ) = _o""S (1 - !) _o""S A^LO (r^ ) ; r^ DGLAP = _o""S a, 1! - 1c' ; Saturation E. Levin 12 Modified B-K equation: * @N (r, Y ; b)@ Y = CF o""Sij2 Z d 2r0 r2 (~r - ~r 0)2 r02 " 2N "r 0, Y ; ~b - 1 2 (~r - ~r 0)<< - N "r0, Y ; ~b - 1 2 (~r - ~r 0)<< N "~r - ~r 0, Y ; b - 1 2~r 0<< << B -Kterm - - @@ Y " 2N "r 0, Y ; ~b - 1 2 (~r - ~r 0)<< - N "r0, Y ; ~b - 1 2 (~r - ~r 0)<< N "~r - ~r 0, Y ; b - 1 2~r 0<<<< new _o""S ! A^LO (r^ ) has the following form in Y , r representation _o""S ! A^LO (r^ ) ! _o""S Z KLO (r, r 0) d2 r0 @ N (Y , r 0) @ Y Saturation E. Levin 13 Modified B-K equation versus B-K equation: 0 0.2 0.4 0.6 0.8 1 6 8 10 12 14 N y b=0 r/R = 0.5 0 0.2 0.4 0.6 6 8 10 12 14 y b=10 BKBK-modified 0.1 1 10 100 1000 0 2 4 6 8 10 12 Qsat b y=14 0.1 1 10 100 0 1 2 3 4 5 6 7 b y=11 BKBK-modified Saturation E. Levin 14 0.1 1 10 100 1000 10 11 12 13 14 Qsat y b=0 0.1 1 10 100 1000 10 11 12 13 14 y b=5 BKBK-modified 10 20 30 40 50 60 70 80 4 6 8 10 12 14 16 < b 2 > y r/R=0.5 10 20 30 40 50 60 70 80 90 4 6 8 10 12 14 16 y r/R=1 BKBK-modified Saturation E. Levin 15 d? dyd2pt / o""S p2t Z d 2kt A'(k2 t ) A'((~p - ~k) 2 t ) 10-3 10-4 10-5 10-6 x 1 5 10 50 100 500 kt2 D z^ \Phi NL Hx, kt LR^\Phi L Hx, kt L 85 % 90 % 95 % 100 % 110 % 120 % 110 % 120 % Qs2HxL Saturation E. Levin 16 Antishadowing effects: Z d x A'N L(k2, Y ) = C onst(k2) = Z d x A'L(k2, Y ) Plot of R - 1 = (A'N L - A'L)/A'L -1 -0.8 -0.6 -0.4 -0.2 0 0.2 6 8 10 12 14 16 (f NL-f L )/f NL y kt = 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 6 8 10 12 14 16 (f NL-f L )/f NL y kt = 10 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 6 8 10 12 14 16y kt = 5 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 6 8 10 12 14 16y kt = 20 Saturation E. Levin 17 Excess of heavy quarks: (Eskola, Honkanen, Kolhinen, J-W Qiu & Salgado (2002- )) * Eskola, Kolhinen & Vogt (2004) In GLR-MQ approach: @2xG @ ln Q2 d@y = @ 2xGDGLAP @ ln Q2 @ y - _o"" 2 S C xG2 Q2 Saturation E. Levin 18 Theory development: Dipoles versus B-JIMWLK Dipoles (Mueller (94)) * Z (Y ; [u]) = Pi R Pn(...xi, yi...) Qni=1 u(xi, yi) dVi * @ Pn@ Y = -Pi \Gamma (1 ! 2)N (Pn(...xi, yi...) -Pn-1(...xi, yi...)) * @ Z (Y ,[u])@ Y = \Gamma (1 ! 2)Nu(1 - u) s's'u Z (Y , [u]) ( E.L. & Lublinsky (2002)) Initial conditions: * Z (Y , [u = 1]) = 1 ; * Z (Y = Y0, [u]) = u ; Saturation E. Levin 19 CGC and JIMWLK equation: \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta time(z) t E/m2 (t1 , z 1 )(t , z 2 (t i , z )i(t , z ) ( t' , z'1 1 ) )2 (t'2 , z'2 ) i i( t' , z' )( t' , z' ) interaction time i+1 i+1 i+1 i+1 t=t0 : L(r) + ju .Au +L(A) At t=t 0 : L(r ) + ju Au +L(A). Classical Fields Quantum Fields t1 - t'1 >> t 2 2- t' >> ... >> t i - t'i >> t i+1 - t'i+1 ' At t=t0 Quantum Fieldst=t'FieldsClassical 0 Saturation E. Levin 20 B- JIMWLK A~! BFKL Pomeron Calculus: ( Iancu & Mueller, Mueller & Shoshi, Iancu & Triantafyllopoulos, McLerran & . . . , . . . , . . . , Kovner & Lublinsky) Good news: * B- JIMWLK = BFKL Pomeron Calculus; * B- JIMWLK ! all BFKL Pomeron vertices; * B- JIMWLK ! the first operator proof of Pomeron Calculus; * B- JIMWLK does not lead to merging of Pomerons ; * B- JIMWLK t^ dipole approach; Saturation E. Levin 21 Bad news: * No progress has been achieved in Pomeron calculus; * My nightmare: Lipatov is correct with his effective Lagrangian; Probabilistic interpretation: a hope?! " Reggeon field theory is equivalent to a chemical process where a radical can undergo diffusion, absorption, recombination, and autocatalytic production. Physically, these "radicals" are wee partons (colour dipoles)." ( P. Grassberger & K. Sundermeyer: "Reggeon Field Theory and Markov processes" (1978)) ( Grassberger & Sundermeyer (1978), E.L. (1992), Boreskov (2004)) Saturation E. Levin 22 Probabilistic interpretation: Colour dipoles: 1. the wee partons of the BFKL Pomeron; 2. the correct degrees of freedom at high energy; The typical death-birth process ( Markov chain ): * @ Pn@ Y = -Pi \Gamma (1 ! 2)N (Pn(...xi, yi...) -Pn-1(...xi, yi...)) Saturation E. Levin 23 DOF: 1/Nc2 1/Nc2 leading Nc order 1/N2c corrections 1/Nc2 correctionsx y 1 1 x2 2y x1 y1 x y 2 x1 y1 2 x 2 y2 a) b) c) topology 1 BFKL Pomeron 2 BFKL Pomeron topology Multi Reggeon MRP\Delta >> \Delta 2 Pomeron P -> 2 P 2P -> MRP2 P -> 3 P Saturation E. Levin 24 Hunt for Pomeron loops: y y 1 2 0 Y \Gamma \Gamma ( 1 -> 2 ) ( 2 -> 1 ) \Gamma (1 -> 2) = \Gamma (2-> 1) In Reggeon Calculus In probabilistic interpretation we need to find a correct normalization for (2-> 1)\Gamma E.L & Lublinsky, Kovner & Lublinsky, Rembiesta & Stasto, .....................................) ( Salam, Mueller & Salam, Iancu & Mueller, Mueller, Munier & Shoshi, Iancy & Triantafyllopoulos, Mueller, Shoshi & Wong, Saturation E. Levin 25 Markov process with Pomeron loops: * @Pn@Y = - Pi \Gamma (1 ! 2) N (Pn(...xi, yi...) - Pn-1(...xi, yi...)) P P P P P \Gamma (1->2) - Pi,k \Gamma (2 ! 1) N (Pn(...xi, yi, ..., xk, yk, ...) - Pn+1(...xi, yi, ..., xk, yk, ...)) P P P \Gamma (2->1) P P P - Pi,k \Gamma (2 ! 3) N (Pn(...xi, yi, ..., xk, yk, ...) - Pn-1(...xi, yi, ..., xk, yk, ...)) \Gamma (2->3) P PP PP PPP Saturation E. Levin 26 Toy model: @ Z @ Y = - \Gamma (1 ! 2) u(1 - u) @ Z @ u + \Gamma (2 ! 1) u(1 - u) @ 2 Z (@ u)2 + \Gamma (2 ! 3)u (1 - u) 2 @ 2 Z (@ u)2 \Gamma (1 ! 2) / _o""S ; \Gamma (2 ! 1) / _o""3S /N 2c ; \Gamma (2 ! 3) / _o""S /N 2c ; \Gamma (1!2) \Gamma (2!1) / N 2c _o""2S A` 1 ; \Gamma (1!2) \Gamma (2!3) / N 2 c A` 1 Saturation E. Levin 27 Asymptotic solution for \Gamma (2 ! 3) = 0: Equation: * 0 = - \Gamma (1 ! 2) u(1 - u) @ Z (Y = 1, u) @ u + \Gamma (2 ! 1) u(1 - u) @ 2 Z (Y = 1, u) (@ u)2 Solution: Z (u; Y ! 1) = 1 - B + B eu*(u -1) B = 1 from unitarity constraints Saturation E. Levin 28 N(Y) = \Sigma n 11 nn Y 0 Y' N*(Y') N (Y-Y') Unitarity constraint: N (1) = P 1 n=1 ( -1 u* ) n n! !p n(1) ! t n(1) !n t^ @ nZ/@ un|u=1 Answer ( Boreskov (2004),E.L. (2005), Rembiesa & Stasto (2005)) : N (Y = 1) = 1 - e -u* < but 6= 1 Saturation E. Levin 29 Lessons: * Asymptotic solution leads to a grey disc (not black!!!); * Using the large parameters of our theory, the semiclassical approach can be developed for searching for both the asymptotic solution and the correction to this solution; * The corrections to the asymptotic solution decrease at large values of Y and can be found from the Liouville-type linear equation; * The important region of u are u ! 1 which should be specified by using the unitarity constraint; Saturation E. Levin 30 Saturation and sto chastic pro cesses: (Weigert, Blaizot,Iancu & Weigert, Iancu & Triantafyllopoulos, Mueller, Shoshi & Wong, E.L., . . . ) Poisson representation: * Pn(Y ) = Z do"" F (o"", Y ) t, o"" n n! e -o""u"" t^ < Pn(o"") > * Z (Y ; u) = Z do"" F (o"", Y ) e(u -1)o"" * @ F (o"", Y )@ Y = - @@ o"" (A(o""F (o"", Y )) + 12 @ 2 @ o""2 (B (o""F (o"", Y )) Saturation E. Levin 31 do"" = A(o"") + pB (o"") dW (Y ) where dW (Y ) is a stochastic differential for the Wiener process Could lead to a computation of the high energy amplitude using direct methods !!! Saturation E. Levin 32 My conclusions: * We have a good chance to make reliable estimates of the non-linear effects at LHC energies; * These effects lead not only to a suppression but also to an increase of the inclusive cross sections for k>=Qs; * Theory becomes dangerously complicated but very interesting; * We still have a hope to develop a reliable computer procedure to calculate the main properties of the new phase of QCD Colour Glass Condensate; Saturation E. Levin 33