Diffractive Production of Vector Mesons & the gluon at small x

Thomas Teubner (The University *of* Liverpool)

- I. Why study $\gamma^* p \to V p$?
- II. Theoretical Description in QCD (à la MRT using Parton Hadron Duality)
 - unintegrated gluon $f(x, k_T^2)$ (k_T factorization)
 - skewing corrections, IR regime, ${\cal K}$ factor
- III. Results à la MRT for J/ψ :
 - how relevant are the Skewing corrections?
 - which scales; IR 'pollution'?

IV. Data vs TH: constraining $f(x, k_T^2)$ via diffr. VM production. Conclusions

I. Why study $\gamma^* p \to V p$

- Lots of data from HERA with increased accuracy and in a wider range of phase space (W, Q^2, M_V^2, t) ; diffraction at hadron colliders, ILC, ...
- Challenge to understand diffractive scattering *quantitatively*
- Chance to learn about QCD dynamics in the semi-hard regime
- $\sigma(\gamma^* p \xrightarrow{I\!\!P \sim 2g} V p) \sim [xg(x, scale)]^2$: constrain the gluon distribution at small x and small-to-intermediate scales
 - → regime for diffractive Higgs at LHC!
 - \leadsto relevant for description of Underlying Events at LHC, ...
 - \rightarrow Currently the (global) fits are only poorly constrained in this regime:

CTEQ6M, MRST2004, ZEUS-2005 and H1-2000 gluon fits:

 \rightarrow Sizeable differences even at moderately small scales.

- \rightarrow At small scales even the shapes are very different!
- \rightarrow Negative gluon at small x ?!

II. Theoretical description of $\gamma^* p \rightarrow V p$ in QCD

• Recent TH-predictions go beyond the original LO formula

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}\left(\gamma^*p \to Vp\right)\Big|_{t=0} = \frac{\Gamma_{ee}^V M_V^3 \pi^3 \alpha_s (\overline{Q}^2)^2}{48\alpha} \left[x \, g(x, \overline{Q}^2)\right]^2 \left(1 + \frac{Q^2}{M_V^2}\right)$$

with the *effective scale* $\overline{Q}^2 = \left(Q^2 + M_V^2\right)/4$. (Non-relativistic limit.)

II. Theoretical description of $\gamma^* p \rightarrow V p$ in QCD

• Recent TH-predictions go beyond the original LO formula

$$\frac{\mathrm{d}\sigma}{\mathrm{d}t}(\gamma^* p \to V p) \Big|_{t=0} = \frac{\Gamma_{ee}^V M_V^3 \pi^3}{48\alpha} \frac{\alpha_s(\overline{Q}^2)^2}{\overline{Q}^8} \Big[x \, g(x, \overline{Q}^2) \Big]^2 \left(1 + \frac{Q^2}{M_V^2} \right)$$

with the *effective scale* $\overline{Q}^2 = (Q^2 + M_V^2)/4$. (Non-relativistic limit.)

- \blacktriangleright Allow for transverse momentum k_T of q, \bar{q} , avoiding the non-rel. limit.

Allow for transverse momentum ℓ_T of the gluons $\rightsquigarrow \ell_T'$ factorization:

k_T (ℓ_T) factorization formula with unintegrated gluon:

$$\mathcal{A}(\gamma_{L,T}^* p \to q\bar{q}\,p) = \int_0^\infty \frac{\mathrm{d}\ell_T^2}{\ell_T^4} \,\alpha_s(\ell_T^2) \,\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{x'}, \ell_T^2) \,\phi^{L,T}(Q^2, m^2, k_T^2, \boldsymbol{z}, \ell_T^2)$$

• In the LLA formula the ℓ_T of the gluons is neglected $(\ell_T^2 \ll \bar{Q}^2 + k_T^2)$:

$$\mathcal{A}^{LLA} \sim \frac{\alpha_s(K^2)}{K^2} \int^{K^2} \frac{\mathrm{d}\ell_T^2}{\ell_T^2} f(x, \ell_T^2) = \frac{\alpha_s(K^2)}{K^2} xg(x, K^2)$$
$$(K^2 = z(1-z)Q^2 + k_T^2 + m^2)$$

 \rightarrow Numerically this is a poor approximation!

k_T (ℓ_T) factorization formula with unintegrated gluon:

$$\mathcal{A}(\gamma_{L,T}^* p \to q\bar{q}\,p) = \int_0^\infty \frac{\mathrm{d}\ell_T^2}{\ell_T^4} \,\alpha_s(\ell_T^2) \,\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{x'}, \boldsymbol{\ell_T^2}) \,\phi^{L,T}(Q^2, m^2, k_T^2, \boldsymbol{z}, \boldsymbol{\ell_T^2})$$

• Unintegrated from integrated gluon: $f(x, \ell_T^2) = \frac{\partial [xg(x, q_0^2)T(q_0^2, \mu^2)]}{\partial \ln q_0^2} \Big|_{q_0^2 = \ell_T^2}$

[The Sudakov factor $T = \exp\left[\frac{-C_A \alpha_s(\mu^2)}{4\pi} \ln^2 \frac{\mu^2}{q_0^2}\right]$ resums virtual corrections; probability for no gluon emission in the interval $q_0^2 < q_T^2 < \mu^2 \sim (Q^2 + M^2)/4$.]

• At small
$$\ell_T^2 < \ell_0^2 \sim 2 \text{ GeV}^2$$
 (IR regime) MRT use the 'linear' appr.:
 $\alpha_s(\ell_T^2)g(x,\ell_T^2) = (\ell_T^2/\ell_0^2)\alpha_s(\ell_0^2)g(x,\ell_0^2)$

Alternatively: neglect ℓ_T dep. in $\phi \rightsquigarrow$ similar IR contribution, see below.

Skewing (or off-diagonal) effects:

- Momentum fractions satisfy: $x \simeq \frac{Q^2 + M^2}{W^2 + Q^2} \gg x' \simeq \frac{\ell_T^2}{W^2 + Q^2}$
- In this regime the skewed (integrated) gluon $H_g(x, x')$ is enhanced through the off-diagonal evolution by \rightarrow Shuvaev et al.

$$R_g = \frac{H_g(x, x' \ll x)}{H_g(x, x)} = \frac{2^{2\lambda + 3}}{\sqrt{\pi}} \frac{\Gamma(\lambda + \frac{5}{2})}{\Gamma(\lambda + 4)}$$

- The effective power $\lambda(Q^2)$ of the gluon [assuming $xg \sim x^{-\lambda}$] is calculated numerically for all amplitudes $\mathcal{A}^{L,T}$: $\lambda = \frac{\partial \log \mathcal{A}^{L,T}}{\partial \log(1/x)}$.
- \rightarrow Note: R_g is a leading $\ln Q^2$ effect and can be sizeable when the gluon is sampled at 'large' scales (for large Q^2 or M^2), e.g. $R_g^2 \sim 2$ for Υ photoproduction at HERA.

Important missing ingredient for a full NLO prediction: One loop corrections to the $[(q\bar{q})(2g)]$ vertex

- Typically lead to a significant enhancement in the normalization of QCD processes $\rightarrow K$ factor (may also be fitted from data)
- Up to now no full calculation within k_T factorization
- MRT estimate the K factor from π^2 enhanced terms, analogous to the well known corrections in Drell-Yan $\rightsquigarrow \sigma = \sigma^0 \exp[\pi^2 C_F \alpha_s(..)/\pi]$.*
- First results for diagrammatic calculation for \mathcal{A}^L by D.Yu. Ivanov et al..

* Exp. of the double logarithmic Sudakov form factor $\sim \ln^2(-M^2), \ \ln(-M^2) = \ln M^2 + i\pi$

III. Results à la MRT for J/ψ

How well is the TH pred. under control? Quantify different contributions! We'll see:

- Skewing corrections large but calculable.
- Uncertainty due to 'error band' of input gluon small compared to spread when using different fits.
- IR contribution non-negligible but under control.
- High sensitivity to input gluon where it is poorly contrained!

Skewing corr. PDF uncertainty.

- Different energy dep. $\sigma(W)$ reflects different functional form of gluons. Effect enhanced through skewing corrections.
- 'Error band' from H1 gluon narrow compared to spread using different gluons.

Which scales are relevant?

$$\mathcal{A} \sim xg(x,\ell_0^2) \dots + \int_{\ell_0^2}^{\infty} \frac{\mathrm{d}\ell_T^2}{\ell_T^4} f(x,x',\ell_T^2) \phi \dots$$

Distribution $\sigma(\ell_{max}^2)$ $[\mathcal{A} \sim \int_0^{\ell_{max}} \frac{\mathrm{d}\ell_T^2}{\ell_T^4} \dots]$ Input gluons, int. & unintegrated

IV. Data vs TH: constraining $f(x, k_T^2)$ via diffr. VM production

Preliminary H1 and ZEUS data compared to MRT predictions:

Plots thanks to Philipp Fleischmann (H1)

Conclusions

- Diffractive VM production tests QCD and the gluon in the important semi-hard high energy regime
- Theoretical QCD predictions indicate a very good sensitivity to the gluon and are able to describe most data
- Current PDF fits do not constrain the gluon sufficiently at small x and small to intermediate scales. Use diffr. VM data! For this:
- TH: better get QCD predictions under tighter control (generalized PDF, NLO impact factors, modelling of gluon in the IR)
- EXP: get VM data in the largest possible range (Q^2 , W, L/T, M_V , t)
- Diffraction is getting understood quantitatively, and the exploitation of HERA data for the LHC is far from finished (EXP+TH)!

Some more details on the following pages

MRT avoid VM wave function: Use of Parton Hadron Duality:

Assumption: $\gamma^* \to q\bar{q} \to \pi^+\pi^-$ cross section in the region $M_{q\bar{q}} \sim M_{\rho}$ saturated by ρ (up to $\sim 10\%$ for ω) when integrated over a *suitable* (universal?!) mass interval ΔM :

$$\sigma(\gamma^* p \to \rho p) \simeq 0.9 \sum_{q=u,d} \int_{M_{min}^2}^{M_{max}^2} \frac{d\sigma(\gamma^* p \to (q\overline{q})p)}{dM^2} dM^2$$

+ Projection of $q\bar{q}$ state on the correct VM Quantum Numbers $J^P = 1^-$. (\rightsquigarrow Suppression of IR divergencies for contr. from transverse photon!)

Contributions from the real part of the amplitude:

- The basic amplitudes $\mathcal{A}^{L,T}$ are predominantly imaginary in the high energy (leading $\log 1/x$) limit. Analytical expressions are for $\operatorname{Im} \mathcal{A}$ only.
- Account for the contributions from the real parts through (crossing symmetry + power behaviour ${\rm Im}\,T\sim s^{\lambda}$):

 $\operatorname{Re}\mathcal{A} = \tan(\pi\lambda/2)\operatorname{Im}\mathcal{A}.$

- $\lambda(Q^2) = \frac{\partial \log A}{\partial \log(1/x)}$ calculated numerically on *amplitude level*.
- Martin-Ryskin-T, PRD62,2000: 'The inclusion of the real part enhances the cross section of ρ production by 14 to 19% in the range where we compare to data, J/ψ production by 18 to 25%, and Υ by about 30%, where the bigger effect always occurs at higher Q^2 .'

Structure of the MRT code:

Contributions to $\sigma(\gamma_{L,T}^* p \to V p)|_{t=0}$ from Re, Im for L, T, numerically ('straightforward', no iterative procedure for effective scales):

$$PHD: \int dM^2 \left[\text{Projection:} \int dk_T^2 \left(\text{Skewed A's w. } K \text{ fact.; } \text{Re:} \int dl_T^2 \right) \right]^2$$

Pro and Con's of the MRT approach

- + MRT not just one more 'model' but an approximation of QCD in a certain regime of parameter space.
- + Not just another fit of the data \rightsquigarrow predictive and can be improved.
- + Good description of basic observables: Q^2 and W dependence of σ , L/T.
- + Strong dependence on $g(x,Q^2)$.
- No prediction of t dependence (yet?)
- No q exchange needed for lower energies (could be added).
- PHD somewhat limiting: Details of VM wave-function in more exclusive measurements? Normalization not a good prediction.
- Full NLO still missing.