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I. Why study γ∗p→ V p ?

II. Theoretical Description in QCD (à la MRT using Parton Hadron Duality)

– unintegrated gluon f(x, k2
T ) (kT factorization)

– skewing corrections, IR regime, K factor

III. Results à la MRT for J/ψ:

– how relevant are the Skewing corrections?

– which scales; IR ‘pollution’?

IV. Data vs TH: constraining f(x, k2
T ) via diffr. VM production. Conclusions



I. Why study γ∗p→ V p

• Lots of data from HERA with increased accuracy and in a wider range of

phase space (W,Q2,M2
V , t); diffraction at hadron colliders, ILC, ...

• Challenge to understand diffractive scattering quantitatively

• Chance to learn about QCD dynamics in the semi-hard regime

• σ(γ∗p IP ∼ 2g−→ V p) ∼ [xg(x, scale)]2 : constrain the gluon distribution

at small x and small-to-intermediate scales

 regime for diffractive Higgs at LHC!

 relevant for description of Underlying Events at LHC, ...

→ Currently the (global) fits are only poorly constrained in this regime:



CTEQ6M, MRST2004, ZEUS-2005 and H1-2000 gluon fits:

→ Sizeable differences even at moderately small scales.

→ At small scales even the shapes are very different!

→ Negative gluon at small x ?!



II. Theoretical description of γ∗p→ V p in QCD

• Recent TH-predictions go beyond the original LO formula
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I Allow for transverse momentum kT of q, q̄, avoiding the non-rel. limit.

I Take into account x 6= x′  
skewing effects (see below),

A ∼ generalized PDF.
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I Allow for transverse momentum `T of the gluons  ‘`T ’ factorization:



kT (`T ) factorization formula with unintegrated gluon:

A(γ∗L,T p→ qq̄ p) =
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• In the LLA formula the `T of the gluons is neglected (`2T � Q̄2 + k2
T ):

A
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(K2 = z(1 − z)Q2 + k2
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→ Numerically this is a poor approximation!



kT (`T ) factorization formula with unintegrated gluon:

A(γ∗L,T p→ qq̄ p) =

∫ ∞

0

d`2T
`4T

αs(`
2
T ) f (x, x′, `2T ) φL,T (Q2,m2, k2

T , z, `
2
T )

• Unintegrated from integrated gluon: f (x, `2T ) =
∂[xg(x,q2

0)T (q20,µ
2)]

∂ ln q20
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2)

4π
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q20
] resums virtual corrections;

probability for no gluon emission in the interval q2
0 < q2

T < µ2 ∼ (Q2 +M 2)/4.]

• At small `2T < `20 ∼ 2 GeV2 (IR regime) MRT use the ‘linear’ appr.:
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Alternatively: neglect `T dep. in φ similar IR contribution, see below.



Skewing (or off-diagonal) effects:

• Momentum fractions satisfy: x ' Q2+M2

W 2+Q2 � x′ ' `2T
W 2+Q2

• In this regime the skewed (integrated) gluonHg(x, x
′) is enhanced through

the off-diagonal evolution by → Shuvaev et al.

Rg =
Hg(x, x

′ � x)

Hg(x, x)
=

22λ+3
√
π

Γ(λ + 5
2)

Γ(λ + 4)

• The effective power λ(Q2) of the gluon [assuming xg ∼ x−λ] is calculated

numerically for all amplitudes A
L,T : λ = ∂ log A

L,T

∂ log(1/x)
.

→ Note: Rg is a leading lnQ2 effect and can be sizeable when the gluon

is sampled at ‘large’ scales (for large Q2 or M2), e.g. R2
g ∼ 2 for Υ

photoproduction at HERA.



K factor:

Important missing ingredient for a

full NLO prediction: One loop cor-

rections to the [(qq̄)(2g)] vertex

p1
p2

(a)

lT

(b)

lT

• Typically lead to a significant enhancement in the normalization of QCD

processes → K factor (may also be fitted from data)

• Up to now no full calculation within kT factorization

• MRT estimate the K factor from π2 enhanced terms, analogous to the

well known corrections in Drell-Yan  σ = σ0 exp[π2CFαs(..)/π].∗

• First results for diagrammatic calculation for A
L by D.Yu. Ivanov et al..

∗ Exp. of the double logarithmic Sudakov form factor ∼ ln2(−M 2), ln(−M 2) = lnM 2+iπ



III. Results à la MRT for J/ψ

How well is the TH pred. under control? Quantify different contributions!

We’ll see:

• Skewing corrections large but calculable.

• Uncertainty due to ‘error band’ of input gluon small compared to spread

when using different fits.

• IR contribution non-negligible but under control.

• High sensitivity to input gluon where it is poorly contrained!



Skewing corr. PDF uncertainty.
• Different energy dep. σ(W ) reflects differ-

ent functional form of gluons. Effect en-

hanced through skewing corrections.

• ‘Error band’ from H1 gluon narrow com-

pared to spread using different gluons.
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Which scales are relevant? A ∼ xg(x, `20) .. +
∫∞
`20

d`2T
`4T

f (x, x′, `2T )φ ..

Distribution σ(`2max) [A ∼
∫ `max

0

d`2T
`4T
. . .] Input gluons, int. & unintegrated
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IV. Data vs TH: constraining f (x, k2
T ) via diffr. VM production

Preliminary H1 and ZEUS data compared to MRT predictions:
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Plots thanks to Philipp Fleischmann (H1)



Conclusions

• Diffractive VM production tests QCD and the gluon in the important

semi-hard high energy regime

• Theoretical QCD predictions indicate a very good sensitivity to the gluon

and are able to describe most data

• Current PDF fits do not constrain the gluon sufficiently at small x and

small to intermediate scales. Use diffr. VM data! For this:

• TH: better get QCD predictions under tighter control (generalized PDF,

NLO impact factors, modelling of gluon in the IR)

• EXP: get VM data in the largest possible range (Q2, W , L/T , MV , t)

I Diffraction is getting understood quantitatively, and the exploitation of

HERA data for the LHC is far from finished (EXP+TH)!



Some more details on the following pages



MRT avoid VM wave function: Use of Parton Hadron Duality:
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ψρ(qq)
ρ
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Assumption: γ∗ → qq̄ → π+π− cross section in the region Mqq̄ ∼Mρ saturated by ρ

(up to ∼ 10% for ω) when integrated over a suitable (universal?!) mass interval ∆M :

σ(γ∗p→ ρp) ' 0.9
∑

q=u,d

∫ M2
max

M2
min

dσ(γ∗p→ (qq)p)

dM2
dM2

+ Projection of qq̄ state on the correct VM Quantum Numbers JP = 1−.

( Suppression of IR divergencies for contr. from transverse photon!)



Contributions from the real part of the amplitude:

• The basic amplitudes A
L,T are predominantly imaginary in the high en-

ergy (leading log 1/x) limit. Analytical expressions are for Im A only.

• Account for the contributions from the real parts through

(crossing symmetry + power behaviour ImT ∼ sλ):

Re A = tan(πλ/2) Im A .

• λ(Q2) = ∂ log A

∂ log(1/x)
calculated numerically on amplitude level.

• Martin-Ryskin-T, PRD62,2000: ‘The inclusion of the real part enhances the cross

section of ρ production by 14 to 19% in the range where we compare to data, J/ψ

production by 18 to 25%, and Υ by about 30%, where the bigger effect always occurs

at higher Q2.’



Structure of the MRT code:

Contributions to σ(γ∗L,T p→ V p)|t=0 from Re, Im for L, T, numerically

(‘straightforward’, no iterative procedure for effective scales):

PHD:

∫

dM2
[

Projection:

∫

dk2
T

(

Skewed A’s w. K fact.; Re:

∫

dl2T

)]2



Pro and Con’s of the MRT approach

+ MRT not just one more ‘model’ but an approximation of QCD in a certain

regime of parameter space.

+ Not just another fit of the data  predictive and can be improved.

+ Good description of basic observables: Q2 and W dependence of σ, L/T .

+ Strong dependence on g(x,Q2).

− No prediction of t dependence (yet?)

− No q exchange needed for lower energies (could be added).

− PHD somewhat limiting: Details of VM wave-function in more exclusive

measurements? Normalization not a good prediction.

− Full NLO still missing.


