Hard Diffraction from Rescattering

- Diffractive DIS: New Insight into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions
- T-odd Single-Spin Asymmetries
- Diffractive dijets/ trijets
- Color Transparency, Color Opaqueness
 DIS 2005 4<sup>-29⁻05</sub>
 Hard Diffraction 1
 </sup>

DDIS

- In a large fraction (~ 10–15%) of DIS events, the proton escapes intact, keeping a large fraction of its initial momentum
- This leaves a large rapidity gap between the proton and the produced particles
- In the t-channel exchange must be color singlet → a pomeron??

Enberg

Diffractive Deep Inelastic Lepton-Proton Scattering

DIS 2005 4⁻29⁻05 Hard Diffraction

M_x

10% of DIS events are diffractive !

Fraction r of events with a large rapidity gap, $\eta_{\text{max}} < 1.5$, as a function of Q_{DA}^2 for two ranges of x_{DA} . No acceptance corrections have been applied.

M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B 315, 481 (1993).

DIS 2005 4⁻29⁻05

Hard Diffraction

Final State Interaction Produces Diffractive DIS

Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

DIS 2005 4⁻29⁻05 Hard Diffraction

Integration over on-shell domain produces phase i Need Imaginary Phase to Generate Pomeron

> Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

DIS 2005 4⁻²⁹⁻⁰⁵ Hard Diffraction

Need Final State Interactions !

DIS 2005 4⁻29⁻05 Hard Diffraction

DIS 2005 4⁻29⁻05 Hard Diffraction

- Quarks Reinteract in Final State
- Analogous to Coulomb phases, but not unitary
- Observable effects: DDIS, SSI, shadowing, antishadowing
- Structure functions cannot be computed from LFWFs computed in isolation
- Wilson line not 1 even in lcg

Hard Diffraction

QCD factorization

QCD factorization theorem: Separation of hard and soft The quark PDF is given by

$$f_{q/N} \sim \int dx^- e^{-ix_B p^+ x^-/2} \langle N(p) \, | \, \bar{\psi}(x^-) \gamma^+ W[x^-; 0] \, \psi(0) \, | \, N(p) \, \rangle_{x^+=0}$$

Wilson line:
$$W[x^-; 0] = P \exp\left[ig \int_0^{x^-} dw^- A_a^+(0, w^-, 0_\perp)t_a\right]$$

- **DIS:** $W[x^-; 0] \rightarrow rescattering of struck quark on target$
- $A^+ \rightarrow$ longitudinal *instantaneous* (in x^+) gluon exch.
- No A^{\perp} within loffe coherence length $x^{-} \sim 1/m_{p}x_{B}$

$$\overline{\psi}(y) \int_0^y dx \ e^{iA(x) \cdot dx} \ \psi(0)$$

Wilson line means that DIS looks something like this:

Brodsky, Hoyer, Marchal, Peigné and Sannino (BHMPS) showed that [Phys. Rev. D65 (2002) 114025]

- rescattering can lead to on-shell intermediate states and *imaginary amplitudes* and cannot be ignored in any gauge
- I not even in $A^+ = 0$ gauge!

It has also been shown to yield nuclear shadowing and single spin asymmetries.

Enberg

DIS 2005 4⁻29⁻05 Hard Diffraction

Final State Interactions in QCD

Feynman Gauge Light-Cone Gauge Result is Gauge Independent

DIS 2005 4⁻29⁻05 Hard Diffraction

Final State Interactions Non-Zero in QCD

Light-Cone Gauge

Feynman Gauge

BHMPS

DIS 2005 4⁻29⁻05 Hard Diffraction

Rescattering and factorization

- Important to realize that the rescattering is compatible with factorization theorems by construction
 - the Wilson line is a part of the definition of the PDF, so the rescattering is also a part of the PDF
- When one measures the PDF in experiments, one measures the PDF *including* rescattering
- In a similar way, the diffractive PDFs are included in the inclusive PDFs

DIS 2005 4⁻29⁻05 Hard Diffraction

Dipole models

Many models are based on using the dipole frame

- \rightarrow Use proton's rest frame, or more generally, a frame where the photon has very large lightcone q^+ momentum
- Then the photon fluctuates into a color dipole before hitting the proton

At small x_B the fluctuation is very long-lived and the $q\bar{q}$ pair of the dipole is transversely frozen during the interaction.

Very useful in small-x physics!

I4

Hebecker Kopeliovitch

Lab Frame Picture

Similar to Color Dipole Model

DIS 2005 4⁻29⁻05 Hard Diffraction

Stan Brodsky, SLAC

+ . . .

$$Q^{4} \frac{d\sigma}{dQ^{2} dx_{B}} = \frac{\alpha_{\rm em}}{16\pi^{2}} \frac{1-y}{y^{2}} \frac{1}{2M\nu} \int \frac{dp_{2}^{-}}{p_{2}^{-}} d^{2}\vec{r}_{T} d^{2}\vec{R}_{T} |\tilde{M}|^{2}$$

where

$$|\tilde{M}(p_2^-, \vec{r}_T, \vec{R}_T)| = \left|\frac{\sin\left[g^2 W(\vec{r}_T, \vec{R}_T)/2\right]}{g^2 W(\vec{r}_T, \vec{R}_T)/2}\tilde{A}(p_2^-, \vec{r}_T, \vec{R}_T)\right|$$

is the resummed result. The Born amplitude is

$$\tilde{A}(p_2^-, \vec{r}_T, \vec{R}_T) = 2eg^2 M Q p_2^- V(m_{||} r_T) W(\vec{r}_T, \vec{R}_T)$$

where $m_{||}^2 = p_2^- M x_B + m^2$ and

$$V(m r_T) \equiv \int \frac{d^2 \vec{p}_T}{(2\pi)^2} \frac{e^{i\vec{r}_T \cdot \vec{p}_T}}{p_T^2 + m^2} = \frac{1}{2\pi} K_0(m r_T)$$

The rescattering effect of the dipole of the $q\overline{q}$ is controlled by

$$W(\vec{r}_{T},\vec{R}_{T}) \equiv \int \frac{d^{2}\vec{k}_{T}}{(2\pi)^{2}} \frac{1-e^{i\vec{r}_{T}\cdot\vec{k}_{T}}}{k_{T}^{2}} e^{i\vec{R}_{T}\cdot\vec{k}_{T}} = \frac{1}{2\pi} \log\left(\frac{|\vec{R}_{T}+\vec{r}_{T}|}{R_{T}}\right).$$
Precursor of Nuclear Shadowing
Hard Diffraction
Hard Diffraction
$$16$$
Stan Brodsky, SLAC

Consequences for DDIS (1)

- Underlying hard scattering sub-process is the same in diffractive and non-diffractive events
- Same Q² dependence of diffractive and inclusive PDFs (remember: hard radiation not resolved)
- **•** and same energy (W or x_B) dependence
- $\Rightarrow \frac{\sigma_{\text{diff}}}{\sigma_{\text{tot}}}$ independent of x_B and Q^2 (as in data)
- Note:
 - In pomeron models the ratio depends on $x_B^{1-\alpha_{I\!\!P}}$ which is ruled out
 - In a two-gluon model with two hard gluons, the diffractive cross section depends on $[f_{q/p}(x_B, Q^2)]^2$

 $\sigma_{tot} \propto s^{\alpha_{tot}-1}$

 $\sigma_{diff} \propto s^{2\alpha_{diff}-2}$

No factorization of hard pomeron

S. J. Brodsky, P. Hoyer, N. Marchal, S. Peigne and F. Sannino, Phys. Rev. D 65, 114025 (2002) [arXiv:hep-ph/0104291].S. J. Brodsky, R. Enberg, P. Hoyer and G. Ingelman, arXiv:hep-ph/0409119.

DESY 05-011 hep-ex/0501060 January 2005

Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter ZEUS Collaboration

DIS 2005 4⁻29⁻05 Hard Diffraction

18

DIS 2005 4⁻29⁻05 Hard Diffraction

Consequences for DDIS (2)

- Rescattering gluons have small momenta
 - $\Rightarrow \beta$ dependence of diffractive PDFs arises from underlying (nonperturbative) $g \rightarrow q\bar{q}$ and $g \rightarrow gg$

• Effective $I\!P$ distribution and quark structure function:

 $f_{I\!\!P/p}(x_{I\!\!P}) \propto g(x_{I\!\!P}, Q_0^2)$ $f_{q/I\!\!P}(\beta, Q_0^2) \propto \beta^2 + (1-\beta)^2$

 Diffractive amplitudes from rescattering are dominantly imaginary — as expected for diffraction (Ingelman–Schlein IP model has real amplitudes)

DIS 2005 4⁻29⁻05

Hard Diffraction

Hadron-hadron collisions

Extend to hard diffraction in hadronic collisions:

- Diffractive factorization theorem doesn't hold
- Data shows ~ 1% diffraction instead of ~ 10 % in DIS
- Both target and projectile colored \rightarrow different rescattering \rightarrow lower probability for neutralization

DIS 2005 4⁻29⁻05 Hard Diffraction

Diffractive Vector Meson Electroproduction e eVM $W_{\gamma r}$ p pt

DIS 2005 4⁻29⁻05 Hard Diffraction

Diffractive vector meson production is a similar, but exclusive, process

Here the amplitude is dominated by small dipoles and Q^2 , M_V , or t can give a perturbative hard scale

QCD predictions [Gunion, Frankfurt, Strikman, Mueller, SJB) for t, q^2, s and polarization dependence verified.

Color transparency verified – coherent production on every nucleon of nucleus! [Mueller, SJB].

Measures The Distribution Amplitude of the Vector Meson

$$\phi(x,Q) = \int^{k_\perp^2 < Q^2} d^2 k_\perp \Psi_{qar q}(x,ec k_\perp,\lambda_i)$$

Diffractive Vector Meson Electroproduction

Two gluon exchange

Hard gluons with $k_{\perp} \sim 1/Q$ couple to small $q\bar{q}$ color singlet: transverse size: $b_{\perp} \sim 1/Q$

BFKL Hard Pomeron $A \sim s^1 (1 + \alpha_s \log \frac{s}{Q^2} + \alpha_s^2 \log^2 \frac{s}{Q^2} + \cdots) \sim s^{\alpha_P(Q^2)}$

Distribution amplitude of vector meson $\phi_{\rho}(x, Q) \sim f_{\rho}x(1-x)$ ERBL Evolution from PQCD Successful PQCD predictions for $\frac{d\sigma}{dt}(\gamma^* p \rightarrow \rho^0 p')$: s, Q^2, t dependence σ_L dominance

S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller and M. Strikman,

"Diffractive leptoproduction of vector mesons in QCD," Phys. Rev. D 50, 3134 (1994) [arXiv:hep-ph/9402283].

 W^{δ} dependence vs. $Q^2 + m_V^2$ for elastic vector meson production from ZEUS.

-0.2

 $Q^{2} + M_{V}^{2} (GeV^{2})$

Final State Interactions Produce T-Odd (Sivers Effect)

- Bjorken Scaling!
- Arises from Interference of Final State Coulomb Phase in S and P waves
- Relate to the quark contribution to the target proton anomalous magnetic moment

 $\vec{S} \cdot \vec{p}_{jet} \times \vec{q}$

DIS 2005 4⁻29⁻05 Hard Diffraction

Model Calculation producing a target single-spin asymmetry in semi-inclusive leptoproduction

Quarks Reinteract in the Final State Interference of Coulomb Phases for *S* and *P* states Produce Single Spin Asymmetry [Siver's Effect] $\vec{S} \cdot \vec{p}_{jet} \times \vec{q}$

Proportional to the Proton Anomalous Moment and α_s .

Prediction for Single-Spin Asymmetry

Single Spin Asymmetry In the Drell Yan Process $\vec{S}_p \cdot \vec{\overline{p}} \times \vec{q}_{\gamma^*}$

Quarks Interact in the Initial State

Interference of Coulomb Phases for *S* and *P* states

Produce Single Spin Asymmetry [Siver's Effect]Proportional

to the Proton Anomalous Moment and α_s . **Opposite Sign to DIS! No Factorization**

Origin of Nuclear Shadowing in Glauber -Gribov Theory

Interference of one-step and two-step processes Interaction on upstream nucleon diffractive Phase i X i = - I produces destructive interference No Flux reaches down stream nucleon

DIS 2005 4⁻29⁻05 Hard Diffraction

Anti-Shadowing

Nuclear Shadowing in QCD

Nuclear Shadowing not included in nuclear LFWF!

DIS 2005 4⁻29⁻05 Hard Diffraction

Shadowing and Antishadowing in Lepton-Nucleus Scattering

 Shadowing and Antishadowing in DIS arise from interference of multi-nucleon processes in nucleus
 Phases!

• Not due to nuclear wavefunction Wavefunction of stable nucleus is real. Effect of multi-scattering of $q\overline{q}$ in nucleus.

 Bjorken Scaling : Interference requires leading-twist diffractive DIS processes

DIS 2005 4⁻29⁻05 Hard Diffraction

Shadowing and Antishadowing in Lepton-Nucleus Scattering

 Shadowing: Destructive Interference of Two-Step and One-Step Processes
 Pomeron Exchange

 Antishadowing: Constructive Interference of Two-Step and One-Step Processes!
 Reggeon and Odderon Exchange

 Antishadowing is Not Universal!
 Electromagnetic and weak currents: different nuclear effects !
 Potentially significant for NuTeV Anomaly}

DIS 2005 4⁻29⁻05 Hard Diffraction

The one-step and two-step processes in DIS on a nucleus.

Coherence at small Bjorken x_B : $1/Mx_B = 2\nu/Q^2 \ge L_A.$

If the scattering on nucleon N_1 is via pomeron exchange, the one-step and two-step amplitudes are opposite in phase, thus diminishing the \overline{q} flux reaching N_2 .

 \rightarrow Shadowing of the DIS nuclear structure functions.

DIS 2005 4⁻29⁻05

Hard Diffraction

Phase of two-step amplitude relative to one step:

$$\frac{1}{\sqrt{2}}(1-i) \times i = \frac{1}{\sqrt{2}}(i+1)$$

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of γ^*, Z^0, W^{\pm}

DIS 2005 4⁻29⁻05 Hard Diffraction

The one-step and two-step processes in DIS on a nucleus.

If the scattering on nucleon N_1 is via C = - Reggeon or Odderon exchange, the one-step and two-step amplitudes are **opposite in phase, enhancing** the \overline{q} flux reaching N_2

 \rightarrow Antishadowing of the DIS nuclear structure functions

DIS 2005 4⁻²⁹⁻⁰⁵

Hard Diffraction

Estimate 20% effect on extraction of $\sin^2 \theta_W$ for NuTeV

Need new experimental studies of antishadowing in

- Parity-violating DIS
- Spin Dependent DIS
- Charged and Neutral Current DIS

DIS 2005 4⁻29⁻05 Hard Diffraction

• Small Size Pion Valence Fock State

- Color Transparent
- E791 Fermilab Experiment

DIS 2005 4⁻29⁻05 Hard Diffraction

Use Diffraction to Resolve Hadron Substructure

- Measure Light-Front Wavefunctions
- AdS/CFT predictions
- Novel Aspects of Hadron Wavefunctions: Intrinsic Charm, Hidden Color, Color Transparency/Opaqueness
- Diffractive Di-Jet Production
- Nuclear Shadowing and Antishadowing
- New Mechanism for Higgs Production

Diffractive Dissociation of Pion

Measure Light-Front Wavefunction of Pion Two-gluon Exchange Minimal momentum transfer to nucleus Nucleus left Intact

DIS 2005 4⁻²⁹⁻⁰⁵ Hard Diffraction

Fluctuation of a Pion to a Compact Color Dipole State

Color-Transparent Fock State For High Transverse Momentum Di-Jets

Same Fock State Determines Weak Decay

Fluctuation of a Pion to a Compact Color Dipole State

Small Size Pion Can Interact Coherently on Each Nucleon of Nucleus

$$M(\pi A \rightarrow JetJetA') = A^{1}M(\pi N \rightarrow JetJetN')F_{A}(t)$$

$$d\sigma/dt(\pi A \rightarrow JetJetA') =$$

$$A^{2}d\sigma/dt(\pi N \rightarrow JetJetN')|F_{A}(t)|^{2}$$

$$\sigma \propto \frac{A^{2}}{R_{A}^{2}} \sim A^{4/3}$$

Diffractive Dijet Cross Section Color Transparent

- Fully coherent interactions between pion and nucleons.
- Emerging Di-Jets do not interact with nucleus.

$$\mathcal{M}(\mathcal{A}) = \mathcal{A} \cdot \mathcal{M}(\mathcal{N})$$
$$\frac{d\sigma}{dq_t^2} \propto A^2 \qquad q_t^2 \sim 0$$
$$\sigma \propto A^{4/3}$$

E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

DIS 2005 4⁻29⁻05 Hard Diffraction

Verification of QCD Color Transparency

<u>A-Dependence results:</u>	$\sigma \propto A^{lpha}$	
k _t range (GeV/c)	<u> </u>	$\underline{\alpha}$ (CT)
$1.25 < k_t < 1.5$	1.64 + 0.06 -0.12	1.25
$1.5 < k_t < 2.0$	1.52 ± 0.12	1.45
$2.0 < k_t < 2.5$	1.55 ± 0.16	1.60

 α (Incoh.) = 0.70 ± 0.1

Conventional Glauber Theory Ruled Out FermiLab E791 Ashery et al

Diffractive Dissociation of a Pion into Dijets

$\pi A \rightarrow JetJetA'$

- E789 Fermilab Experiment Ashery et al
- 500 GeV pions collide on nuclei keeping it intact
- Measure momentum of two jets
- Study momentum distributions of pion LF wavefunction

$$\psi^{\pi}_{qar{q}}(x,ec{k}_{\perp})$$

Diffractive Dissociation of Pion into Di-Jets

- Verify Color Transparency
- Pion Interacts coherently on each nucleon of nucleus !
- Pion Distribution similar to Asymptotic Form Also:AdS/CFT
- Scaling in transverse momentum consistent with PQCD

 $M \propto A, \ \sigma \propto A^2$

$$\psi(x,k_{\perp}) \propto x(1-x)$$

THE kt DEPENDENCE OF DI-JETS YIELD

$$\frac{d\sigma}{dk_{t}^{2}} \propto \left|\alpha_{s}(k_{t}^{2})G(x,k_{t}^{2})\right|^{2} \left|\frac{\partial^{2}}{\partial k_{t}^{2}}\psi(u,k_{t})\right|^{2}$$

Coulomb Dissociate Proton to Three Jets at HERA

Measure $\Psi_{qqq}(x_i, \vec{k}_{\perp i})$ valence wavefunction of proton

DIS 2005 4⁻²⁹⁻⁰⁵ Hard Diffraction

Measure ratio of pion pairs to quark pairs in diffractive virtual photon interactions

The price: $\sigma_{2\pi} / \sigma_{2J} \sim k_t^{-4}, \sim M^{-4}$

Pion quantum numbers ? Longitudinal/Transverse ?

Relation to pion Time-Like form factor ?

$$\frac{\sigma(\gamma^* + p \to 2\pi + p)}{\sigma(\gamma^* + p \to X + p)} \propto |F_{\pi}|^2$$

The Odderon

- Three Gluon Exchange
- Interference of 2-gluon and 3-gluon exchange leads to matter/antimatter asymmetries
- Asymmetry in jet asymmetry in $\gamma p \rightarrow c\bar{c}p$
- Analogous to lepton energy and angle asymmetry $\gamma Z \rightarrow e^+e^-Z$
- Pion Asymmetry in $\gamma p \rightarrow \pi^+ \pi^- p$

AdS/CFT and QCD

- Non-Perturbative Derivation of Dimensional Counting Rules (Strassler and Polchinski)
- Light-Front Wavefunctions: Confinement at Long Distances and Conformal Behavior at short distances (de Teramond and Sjb)
- Power law fall-off at large transverse momentum, x --> I
- Hadron Spectra, Regge Trajectories

AdS/CFT

- Use mapping of SO(4,2) to AdS5
- Scale Transformation represented by wavefunction in 5th dimension
- Holographic model: Confinement at large distances and conformal symmetry at short distances
- Match solutions a large r to conformal dimension of hadron wavefunction at short distances
- Truncated space simulates "bag" boundary conditions

FIG. 1: Light meson orbital states for $\Lambda_{QCD} = 0.263$ GeV. Results for the vector mesons are shown in (a) and for the pseudoscalar mesons in (b). The dashed line has slope 1.16 GeV² and is drawn for comparison.

G. F. de Teramond and S. J. Brodsky, "The hadronic spectrum of a holographic dual of QCD," arXiv:hep-th/0501022.

FIG. 2: Predictions for the light baryon orbital spectrum for $\Lambda_{QCD} = 0.22$ GeV. The lower curves corresponds to baryon states dual to spin- $\frac{1}{2}$ modes in the bulk and the upper to states dual to spin- $\frac{3}{2}$ modes. G. F. de Teramond and S. J. Brodsky,

arXiv:hep-th/0501022.

AdS/CFT

• Light-Front Wavefunctions can be determined by matching functional dependence in fifth dimension to scaling in impact space.

$$\left[z^2 \ \partial_z^2 - (d-1)z \ \partial_z + z^2 \ \mathcal{M}^2 - (\mu R)^2\right] f(z) = 0,$$

• Relative orbital angular momentum

• High transverse momentum behavior matches PQCD LFWF: Belitsky, Ji, Yuan

If we impose the condition:

$$\psi\left(x, |\vec{b}_{\perp}| = b_o\right) = 0, \tag{25}$$

then

$$\psi(x,b) = \gamma(x)\chi(b), \tag{26}$$

where $\gamma(x)$ is determined from the conformal invariance of the theory. In the conformal limit: $\gamma(x) = x(1-x)$. We obtain for $\psi(x, b)$

$$\psi(x,b) = Cx(1-x)\frac{J_{\alpha}\left(b\mathcal{M}\right)}{b},\tag{27}$$

The two-parton state including orbital angular momentum ℓ and radial modes is:

$$\psi_{n,\ell,k}(x,b) = B_{n,\ell,k} \ x(1-x) \frac{J_{n+\ell-1} \left(b\beta_{n-1,k}\Lambda_{QCD}\right)}{b}, \tag{28}$$

The figures show the model predictions for the two-parton wavefunction $\psi_n(x, \vec{b}_{\perp})$, n = 2, as a function of x and $|\vec{b}_{\perp}|$ for $\ell = 0, k = 1$; $\ell = 1, k = 1$ and $\ell = 0, k = 2$ respectively. The normalization in the figures is arbitrary.

DIS 2005 4⁻29⁻05

Hard Diffraction

Stan Brodsky, SLAC

64

Figure 1: Ground state light-front wavefunction in impact space $\psi(x, b)$ for a twoparton state in a holographic QCD model for $n = 2, \ell = 0, k = 1$.

$$\psi_{n,\ell,k}(x,r) = B_{n,\ell,k} \ x(1-x) \frac{J_{n+\ell-1} \left(r\beta_{n-1,k}\Lambda_{QCD}\right)}{r},$$

b = r
DIS 2005
4⁻²⁹⁻⁰⁵

$$\frac{Hard Diffraction}{_{65}}$$

Stan Brodsky, SLAC

Hadrons Fluctuate in Particle Number

Proton Fock States

 $|uud \rangle, |uudg \rangle, |uuds\bar{s} \rangle, |uudc\bar{c} \rangle, |uudb\bar{b} \rangle \cdots$

- Strange and Anti-Strange Quarks not Symmetric $s(x) \neq \overline{s}(x)$
- "Intrinsic Charm": High momentum heavy quarks
- "Hidden Color": Deuteron not always p + n
- Orbital Angular Momentum Fluctuations -Anomalous Magnetic Moment

Intrinsic Charm in Proton

 $|uudc\bar{c}\rangle$ Fluctuation in Proton QCD: Probability $\frac{\sim \Lambda_{QCD}^2}{M_Q^2}$

 $c\bar{c}$ in Color Octet High x charm

8711A82

Distribution peaks at equal rapidity (velocity) Therefore heavy particles carry the largest momentum fractions

 $|e^+e^-\ell^+\ell^- >$ Fluctuation in Positronium QED: Probability $\frac{\sim (m_e \alpha)^4}{M_\ell^4}$

Measure c(x) in Deep Inelastic Lepton-Proton Scattering

EMC Measurements of the Charm Structure Function

J. J. Aubert et al. [European Muon Collaboration], "Production Of Charmed Particles In 250-Gev Mu+ - Iron Interactions," Nucl. Phys. B 213, 31 (1983).

Diffractive Dissociation of Intrinsic Charm

Coalescence of Comoving Charm and Valence Quarks Produce J/ψ , Λ_c and other Charm Hadrons at High x_F

DIS 2005 4⁻29⁻05 Hard Diffraction

J/w nuclear dependence vrs rapidity, XAU, XE

Data favors (weak) shadowing + (weak) absorption (a > 0.92)

With limited statistics difficult to disentangle nuclear effects

Will need another dAu run! (more pp data also)

Not universal versus X₂ : shadowing is not the main story. BUT does scale with x_F ! - why? (Initial-state gluon energy loss -which goes as x₁~x_F - expected to be weak at RHIC energy)

Intrinsic Charm Mechanism for Double Diffraction

 $x_{J/\psi} = x_c + x_{\bar{c}}$

 $p p \rightarrow J/\psi p p$

High x_F !

Intrinsic $c\bar{c}$ pair formed in color octet 8_C in proton wavefunction Large Color Dipole Collision produces color-singlet J/ψ through color exchange Soffer, sjb RHIC Experiment

Production of a Double-Charm Baryon

Shadowing of $pA \rightarrow J/\Psi X$

 J/Ψ Production on Front Surface No Absorption of Propagating J/Ψ $\sigma(p + A \rightarrow J/\Psi + X) \propto A^{2/3}$

Elastic scattering of IC Fock state: $|[uud]_{8_C}[c\bar{c}]_{8_C} > + N_1 \rightarrow |[uud]_{8_C}[c\bar{c}]_{8_C} > + N_1$ followed by: $|[uud]_{8_C}[c\bar{c}]_{8_C} > + N_2 \rightarrow J/\Psi + X$ Depleted flux on downstream nucleons

DIS 2005 4⁻29⁻05 Hard Diffraction

DIS 2005 4⁻29⁻05 Hard Diffraction

Nuclear effects in Quarkonium production $p + A at s^{1/2} = 38.8 \text{ GeV}$

E772 data

 $\sigma(p+A) = A^{\alpha} \sigma(p+N)$

Strong x_F - dependence

Nuclear effects scale with xF, not x2 !!!

Intrinsic Charm Mechanism for Double Diffraction

 $p p \rightarrow J/\psi p p$

 $x_{J/\psi} = x_c + x_{\bar{c}}$

High x_F !

Intrinsic $c\bar{c}$ pair formed in color octet 8_C in proton wavefunction Large Color Dipole Collision produces color-singlet J/ψ through color exchange Soffer, sjb RHIC Experiment

Doubly-Diffractive Higgs Production

 $p_a + p_b \rightarrow p_c + p_d + H^0$

1-2005 8711A85

Ĵ/Ψ, Υ, Ζ^ο ,Η^ο

pd

 $p_{H}^{\mu} = p_{a}^{\mu} + p_{b}^{\mu} - p_{c}^{\mu} - p_{d}^{\mu}$ Low transverse momentum protons p_{c}, p_{d} Higgs appears in Missing Mass spectrum dN/dM^{2} $M^{2} = p_{H}^{2}$ Intrinsic Charm: Large range of Higgs momentum $x_{F} = p_{H}^{z}/p_{a}^{z}$ Extrapolate from doubly diffractive $J/\psi, \Upsilon, Z^{0}$ production 78 Soffer, Schmidt,sjb

New Test of Intrinsic Charm

Doubly Diffractive DIS Reactions

 $\gamma^*p \to \rho + J/\psi + p$

 $\gamma^* p \to \rho + D + \Lambda_c$

Charm produced at high x_F and small p_T in proton fragmentation region Hard Diffraction

DIS 2005 4⁻29⁻05

Higgs Production at High x_F

 $pp \rightarrow H^0 X$

- Small transverse momentum
- Same x_F Distribution as Quarkonium
- Axial Detector?
- Intrinsic Charm and Bottom Couples to Higgs
- Higgs will carry high momentum fraction of projectile momentum

DIS 2005 4⁻29⁻05 Hard Diffraction

Lepage, Ji, sjb Hidden Color in QCD

- Deuteron six quark wavefunction:
- 5 color-singlet combinations of 6 color-triplets -one state is |n p>
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer
- **Predict** $\frac{d\sigma}{dt}(\gamma d \to \Delta^{++}\Delta^{-}) \simeq \frac{d\sigma}{dt}(\gamma d \to pn)$ at high Q^2

• 15% Hidden Color in the Deuteron

DIS 2005 4⁻²⁹⁻⁰⁵ Hard Diffraction

Hard Diffraction from Rescattering

- Diffractive DIS: New Insight into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

DIS 2005 4⁻29⁻05 Hard Diffraction

83