

Politecnico di Bari and Sezione INFN

Bari, Italy <u>Case Western Reserve University</u> Cleveland, Ohio,USA

<u>Institut für Luft- und Kältetechnik,</u> Dresden, Germany

CERN, Geneva, Switzerland

<u>Università di Genova and Sezione INFN</u> Genova, Italy

<u>University of Helsinki and HIP,</u> Helsinki, Finland

<u>Academy of Sciences</u>, Praha, Czech Republic

Penn State University

University Park, USA

Brunel University, Uxbridge, UK

TOTEM TDR is fully approved by the LHCC and the Research Board

TOTEM Physics

- **σ** tot
- elastic scattering
- diffraction (together with CMS)

Karsten Eggert CERN, PH Department

on behalf of the **TOTEM Collaboration** http://totem.web.cern.ch/Totem/

DIS 2005, Madison, Wisconsin, U.S.A.

CMS + TOTEM: Acceptance

CMS+TOTEM: largest acceptance detector ever built at a hadron collider

> 90 % of all diffractive protons are detected 10 million min. bias events, including all diffractive processes, in a 1 day run with β^* = 1540 m

T1 telescope

5 planes with measurement of three coordinates per plane

1 arm

T2: telescope

8 triple-GEM planes, to cope with high particle fluxes **5.3<**[η]**<6.8**

Resolution: $\sigma_R \sim 115 \mu m$; $\sigma_{\phi} \sim 16 mrad$

The Roman Pot and its installation on Aug. 18th

TOTEM ROMAN POT IN CERN SPS BEAM

SIMOSI

Roman Pot station with two units 4 m apart

-Final prototype at the end of 2005

Si detectors and read-out inside the Roman Pots

Edgeless Silicon Detectors for the RPs

Active edges: X-ray measurement

Vertical detector 8

TOTEM Physics

Total cross-section with a precision of 1%

Elastic pp scattering in the range 10 ⁻³ < t = $(p \theta)^2$ < 10 GeV²

Particle and energy flow in the forward direction

Measurement of leading particles

Diffractive phenomena with high cross-sections

Different running scenarios ($\beta^* = 1540, 170, 18, 0.5 \text{ m}$)

COMPETE Collaboration fits all available hadronic data and predicts:

LHC: $\sigma_{tot} = 111.5 \pm 1.2 + 4.1 \text{ mb}$

[PRL 89 201801 (2002)]

Measurement of σ_{tot}

Measurement of the total cross section with the luminosity independent method using the Optical Theorem.

Measurement of the elastic and inelastic rate with a precision better than 1%.

Running Scenarios

Scenario	1	2	3	4
Physics:	low t elastic, σ _{tot} , min. bias, soft diffraction	large t elastic	diffraction	hard diffraction (under study)
β* [m]	1540	18	1540	170
N of bunches	43	2808	156	2808
N of part. per bunch	0.3 x 10 ¹¹	1.15 x 10 ¹¹	(0.6 - 1.15) x 10 ¹¹	1.15 x 10 ¹¹
Half crossing angle [µrad]	0	160	0	150
Transv. norm. emitt. [μm rad]	1	3.75	1 - 3.75	3.75
RMS beam size at IP [μm]	454	95	454 - 880	270
RMS beam diverg. [µrad]	0.29	5.28	0.29 - 0.57	1.7
Peak luminosity [cm ⁻² s ⁻¹]	1.6 x 10 ²⁸	3.6 x 10 ³²	2.4 x 10 ²⁹	~ 0.5 10 ³²

TOTEM Optics Conditions

$L_{\rm TOTEM} \sim 10^{28} \, {\rm cm}^{-2} \, {\rm s}^{-1}$

TOTEM needs special/independent short runs at high- β * (1540m) and low ϵ Scattering angles of a few μ rad

High- β optics for precise measurement of the scattering angle

As a consequence large beam size

Reduced number of bunches (43 and 156) to avoid interactions further downstream

Parallel-to-point focusing (v=0):

Trajectories of proton scattered at the same angle but at different vertex locations

$$y = L_y \theta_y^* + v_y y^*$$
 $L = (\beta \beta^*)^{1/2} \sin \mu(s)$

$$x = L_x \theta_x^* + v_x x^* + \xi D_x$$
 $v = (\beta/\beta^*)^{1/2} \cos \mu(s)$

Maximize L and minimize v

 $\sigma(\theta^*) = \sqrt{\epsilon} / \beta^* \sim 0.3 \,\mu rad$

 $\sigma^* = \sqrt{\epsilon \beta^*} \sim 0.4 \text{ mm}$

High β optics (1540 m): lattice functions

v= $(\beta/\beta^*)^{1/2} \cos \mu(s)$ L = $(\beta\beta^*)^{1/2} \sin \mu(s)$

Parallel to point focusing in both projections

Elastic Scattering: Resolution

t-resolution (2-arm measurement)

φ-resolution (1-arm measurement)

Test collinearity of particles in the 2 arms \Rightarrow Background reduction.

 $\boldsymbol{\phi}$ correlation in DPE

Elastic Cross section (t=0)

	Uncertainty	Fit error			
Beam divergence	10%	-0.05%			
Energy offset	0.1%	-0.25%			
	0.05%	-0.1%			
Beam/ detector offset	100µm	-0.32/-0.41 %			
	20µm	-0.06/-0.08 %			
Crossing angle	0.2µrad	-0.08/-0.1%			
Theoretical uncertainty (model dependent) ~ 0.5%					

Accuracy of σ_{tot}

(σ_{inel} .~80mb, σ_{el} .~30mb)

Trigger Losses (mb)

	σ(mb)	Double arm	Single arm	After Extrapolation
Minimum bias	58	0.3	0.06	0.06
Single diffractive	14	-	2.5	0.6
Double diffractive	7	2.8	0.3	0.1
Double Pomeron	1	-	-	0.02
Elastic Scattering	30	-	-	0.1

Possibilities of p measurement

Try to reach the Coulomb region and measure interference:

- move the detectors closer to the beam than 10 σ + 0.5 mm
- run at lower energy $\sqrt{s} < 14 \text{ TeV}$

Elastic Scattering Cross-Section

TOTEM

CMS/TOTEM Physics

CMS / TOTEM detector ideal for study of diffractive and forward physics

- Soft and hard diffraction in Single and Double Pomeron Exchange production of jets, W, J/ψ, heavy flavours, hard photons
- Excellent proton measurement: gap survival
- Double Pomeron exchange as a gluon factory
 - Production of low mass systems (SUSY, χ, D-Y, jet-jet, …)
 - Glue balls, ...
 - Higgs production ???
- Structure functions (parton saturation) with and without detected protons
- Forward physics: DCC, particle and energy flow
- γγphysics

Detection Prospects for Double Pomeron Events

Trigger via Roman Pots $\xi > 2.5 \times 10^{-2}$

ξ

Trigger via rapidity gap $\xi < 2.5 \text{ x } 10^{-2}$

Running Scenarios

Scenario	1	2	3	4
Physics:	low t elastic, σ _{tot} , min. bias, soft diffraction	large t elastic	diffraction	hard diffraction (under study)
β* [m]	1540 18		1540	170
N of bunches	43	2808	156	2808
N of part. per bunch	0.3 x 10 ¹¹	1.15 x 10 ¹¹	(0.6 - 1.15) x 10 ¹¹	1.15 x 10 ¹¹
Half crossing angle [µrad]	0	160	0	150
Transv. norm. emitt. [μm rad]	1	3.75	1 - 3.75	3.75
RMS beam size at IP [μm]	454	95	454 - 880	270
RMS beam diverg. [µrad]	0.29	5.28	0.29 - 0.57	1.7
Peak luminosity [cm ⁻² s ⁻¹]	1.6 x 10 ²⁸	3.6 x 10 ³²	2.4 x 10 ²⁹	~ 0.5 10 ³²

Diffractive protons at β *=1540 m

-t > 2.5 10 -3 GeV²

10⁻⁸ < ξ < 0.1

 ξ resolution ~ few ‰

New optics $\beta^*=172 \text{ m}$

To optimize diffractive proton detection at L=10³² in the "warm" region at 220m

(um)¹⁰ 8 $L_v \Theta_v$ $L_x \Theta_x + v_x \sigma_x + \xi D$ • L_v large (~270 m) 6 \implies t_{min} =2 x 10⁻² GeV² 30mm 4 10µm (CMS) **10** • $L_x \sim 0 \implies \theta$ independent 2 -2 10σ beam 0 $^{-2}$ Vertex measured by CMS -4 -6-8-10 <u>-6</u> 0 _____ -2 $\dot{2}$ 8 6 10 $\beta = 172 m, 220 m$ x(mm)

~ 65% of all diffractive protons are seen

 ξ determination with a precision of few 10 $^{\text{-4}}$

τοτεμ

Diffractive protons at $\beta^*=172$ m

 $Log(\xi)$ vs Log(-t)

 $Log(\xi)$ vs Log(-t)

$\boldsymbol{\xi}$ and t distributions for 120 GeV Higgs

Particle elongation (x) for L_x=0 and different ξ -values

$\beta^*=172 \text{ m}: \xi \text{ resolution} \sim 4 \ 10^{-4} \text{ (preliminary)}$

- Luminosity of 0.5 x 10^{32} cm⁻² s⁻¹
- About 65% of diffractive protons are seen in the RP at 220 m
- ξ resolution of 4 10 $^{\text{-4}}$
- + θ resolution of few μrad

Future:

- more detailed studies on resolution
- further optimization towards higher luminosities

Mass Acceptance in DPE (preliminary)

Mass resolution at 420 m and 420+220m

DPE cross-sections

$$\beta^{*}=1540 \text{ m} \qquad \int_{1}^{1} L dt = 40 \text{ nb}^{-1}$$

$$\beta^{*}=172 \text{ m} \qquad \int_{3\text{days}}^{3\text{days}} dt = 10 \text{ pb}^{-1}$$

$$\chi_{c0} \qquad 3\mu b \times BR(10^{-3})$$

$$\chi_{b0} \qquad 4nb \times BR(10^{-3})$$

$$pp \rightarrow pXp$$

$$pp \rightarrow pj_{1}j_{2}p$$

$$pt_{jet} > 10 \text{ GeV} \qquad \text{inclusive}$$

$$exclusive$$

$$jet-jet \text{ background to the Higgs:}$$

- ~ 3 nb ~ 4 pb
- ~ 0.1 1 mb • • ~ 1 µb ~ 7 nb

 $M(j_1, j_2) = 120 \text{ GeV}$ M exclusive

~ 18 pb / Δ M= 10 GeV

(Eur. Phys. J.C25,391)

Conclusions

Measure total cross-section σ_{tot} with a precision of 1 % L = ~10²⁸ cm⁻² s⁻¹ with β^* = 1540 m

Measure elastic scattering in the range 10 ⁻³ < t < 8 GeV ²

With the same data study of soft diffraction and forward physics:

- ~ 10⁷ single diffractive events
- ~ 10⁶ double Pomeron events

With $\beta^* = 1540$ m optics at L = 2 × 10²⁹ cm⁻² s⁻¹ : semi-hard diffraction (p_T > 10 GeV)

With β^* = 170 m optics (under study) at L ~ 0.5 10³² cm⁻² s⁻¹: hard diffraction and DPE

Study of rare events (Higgs, Supersymmetry,...) with $\beta^* = 0.5$ m using eventually detectors in the cold region (420m)

TOTEM and CMS will write a common physics LOI in 2005

Extrapolation uncertainty due to Coulomb interference

Extrapolation to t=0 model dependent

Error < 0.5 %

 $d\sigma/dt \sim exp(-Bt)$

Coulomb interference

Change of the slope B

 10^{-2}

10⁻¹ -t (GeV ²)

Diffraction

Exchange of colour singlets ("Pomerons")

 \rightarrow rapidity gaps $\Delta \eta$

Most cases: leading proton(s) with momentum loss $\Delta p / p \equiv \xi$

Unlike minimum bias events:

Exchange of colour triplets or octets: Gaps filled by colour exchange in hadronisation

 \rightarrow Exponential suppression of rapidity gaps:

 $P(\Delta \eta) = e^{-\rho \Delta \eta}, \qquad \rho = dn/d\eta$

$$\sigma_{tot} = \frac{16\pi}{1+\rho^2} \times \frac{(dN/dt)\big|_{t=0}}{N_{el} + N_{inel}}$$

TOTEM

Determination of the emission angle via the measurement at RP-147 m

