Theoretical aspects of pentaquark searches Adam Szczepaniak (Indiana U.) Two examples from the past Pentaquark sightings and kinematic effects Based in part on collaboration with Dzierba and Meyer #### Exchange degeneracy $$\alpha_{\rho}(t) = \alpha_{a_2}(t) \sim 0.5 + t$$ ### Strong exchange degeneracy $\gamma_{\rho}(t)=\gamma_{a_2}(t)$ $$A(K^+n \to K^0p) = \rho + a_2 = 2\gamma(s/s_0)^{\alpha}$$ Real! $$A(K^{-}p \to \bar{K}^{0}n) = \rho - a_{2} = -2\gamma(s/s_{0})^{\alpha}e^{-i\pi\alpha}$$ Amplitude at low (resonances) and high (reggions) energy is constrained by analyticity. $\sigma \sim \text{Im A sizable if there are resonances}$ FIG. 6. Total π^+p (left plot) and π^-p (right plot) cross sections as a function of laboratory momentum, p_{Lab} , compared with Regge fits to high energy data. (Adapted from Ref. [18].) Real CEX K[†]n amplitude No resonances in K[†]n #### SEARCH FOR THE Z* IN $\pi^- + p \rightarrow K^- + Z^*$ AT 6 AND 8 GeV/c‡ E. W. ANDERSON, E. J. BLESER‡‡, H. R. BLIEDEN, G. B. COLLINS, D. GARELICK J. MENES and F. TURKOT Brookhaven National Laboratory, Upton, New York, USA Pentaquark sightings # 5q: positive results Table 3. A tabulation of statistics for the observations of the θ^+ . See text for descriptions of the statistical significance as quoted in the three columns of ratios. The column labeled Published is the significance quoted in the publication. | Experiment | Signal | Background | Significance | | | | |---------------|--------|------------|--------------|----------------------|------------------------|-------------------------| | | s | b | Published | $\frac{s}{\sqrt{b}}$ | $\frac{s}{\sqrt{s+b}}$ | $\frac{s}{\sqrt{s+2b}}$ | | LEPS(1) [4] | 19 | 17 | 4.6 | 4.6 | 3.2 | 2.6 | | LEPS(2) [5] | 56 | 162 | | 4.4 | 3.8 | 2.9 | | CLAS(d) [6] | 43 | 54 | 5.2 | 5.9 | 4.4 | 3.5 | | CLAS(p) [7] | 41 | 35 | 7.8 | 6.9 | 4.7 | 3.9 | | SAPHIR [8] | 55 | 56 | 4.8 | 7.3 | 5.2 | 4.3 | | COSY [9] | 57 | 95 | 4 - 6 | 5.9 | 4.7 | 3.7 | | JINR [10] | 88 | 192 | 5.5 | 6.4 | 5.3 | 4.1 | | SVD [11] | 35 | 93 | 5.6 | 3.6 | 3.1 | 2.4 | | DIANA [12] | 29 | 44 | 4.4 | 4.4 | 3.4 | 2.7 | | $\nu BC [13]$ | 18 | 9 | 6.7 | 6.0 | 3.5 | 3.0 | | NOMAD [14] | 33 | 59 | 4.3 | 4.3 | 3.4 | 2.7 | | HERMES [15] | 51 | 150 | 4.3 - 6.2 | 4.2 | 3.6 | 2.7 | | ZEUS [16] | 230 | 1080 | 4.6 | 7.0 | 6.4 | 4.7 | # 5q: negative results Table 2. Recent negative searches for pentaquark states. For each pentaquark state (P) we indicated with a - that the state was not included in the search while \downarrow indicates that the state was searched for and not observed and \uparrow indicates that the state was searched for and observed. | Experiment | Search Reaction | θ^+ | Ξ_5 | θ_c | Reference | |------------------------|---|------------|----------|------------|--------------| | ALEPH | Hadronic Z decays | # | # | # | [19] | | BaBar | $e^+e^- \to \Upsilon(4S)$ | # | ₩ | _ | [20] | | BELLE | $KN \to PX$ | # | _ | ₩ | [21] | | BES | $e^+e^- \to J/\psi(\psi(2S) \to \theta\bar{\theta}$ | # | _ | ₩ | [22] | | CDF | $p\bar{p} \rightarrow PX$ | # | ₩ | ₩ | [23] | | COMPASS | $\mu^{+}(^{6}LiD) \rightarrow PX$ | # | ₩ | _ | [24] | | DELPHI | Hadronic Z decays | # | _ | _ | [25] | | E690 | $pp \rightarrow PX$ | # | ₩ | _ | [26] | | FOCUS | $\gamma p \rightarrow PX$ | # | ₩ | # | [27] | | HERA-B | $pA \rightarrow PX$ | # | ₩ | _ | [28] | | HyperCP | $(\pi^+, K^+, p)Cu \rightarrow PX$ | # | _ | _ | [29] | | LASS | $K^+p \rightarrow K^+n\pi^+$ | # | _ | _ | [30] | | L3 | $\gamma\gamma o hetaar{ heta}$ | # | _ | _ | [25, 31] | | PHENIX | $AuAu \rightarrow PX$ | # | _ | _ | [32] | | SELEX | $(\pi, p, \Sigma)p \rightarrow PX$ | # | _ | _ | [33] | | SPHINX | $pC(N) \rightarrow \theta^+C(N)$ | # | _ | _ | [34] | | WA89 | $\Sigma^- N \to PX$ | _ | ₩ | _ | [36] | | ZEUS | $ep \rightarrow PX$ | \uparrow | | # | [16, 37, 38] | ## Kinematic reflections in $\gamma n \rightarrow K^+K^-n$ A K^+K^- resonance in its rest frame distributes K's according to its spin $^\sim Y_{SM}(\vartheta)$ 3-body kinematics $cos(\theta) \sim M_{K+n}$ FIG. 3: The calculated (solid line) m_{KN} distribution, as described in the text, compared with the data from [2] Physical background has structure >> reduces the statistical significance of the signal | Reaction | Beam energy
GeV | Cross Section μb | Ref | |--|--------------------|-----------------------|-----| | $\gamma_{ m P} ightarrow { m f_2p}$ | 2.3-2.6 | 1.3 ± 0.37 | [6] | | $\gamma_{ m P} ightarrow m f_2 m p$ | 2.6 - 3.25 | 0.39 ± 0.13 | [6] | | $\gamma_{ m P} ightarrow { m f_2p}$ | 3.25 - 4.0 | 0.19 ± 0.06 | [6] | | $\gamma_{ m P} ightarrow { m f_2p}$ | 4.0 - 6.3 | 0.1 ± 0.1 | [6] | | $\gamma { m p} ightarrow { m a_2^+ n}$ | 4.2 ± 0.5 | 1.14 ± 0.43 | [7] | | $\gamma { m p} ightarrow { m a}_2^+ { m n}$ | 5.25 ± 0.55 | 0.85 ± 0.43 | [7] | | $\gamma { m p} ightarrow { m a}_2^+ { m n}$ | 7.5 ± 0.7 | 0.43 ± 0.43 | [7] | | $\gamma p \rightarrow K^+K^-p$ | 2.8 | 1.0 ± 0.1 | [8] | | $\gamma_{\rm P} \rightarrow { m K^+K^-p}$ | 4.7 | 0.7 ± 0.1 | [8] | TABLE I: Photoproduction cross sections for the $f_2(1275)$ and $a_2(1320)$ resonances and the K^+K^- final state. #### Fake Peaks # Enhancement is broad - but starting with: as a parent distribution generate 40 random histograms with 600 events each - 3 of these along with CLAS results appear here ## CLAS (proton) # $\gamma p \to \pi^+ K^- K^+ n$ Can generate resonance-like structure in K⁺K⁻n spectrum and π⁺ momentum cut enhances kinematic reflections from decays of K⁺K⁻ resonances # Threshold energies $$X=f_2$$ W=2.51GeV $$X=a_2$$ W=2.55GeV $$X = \rho_2$$ W=3.31GeV FIG. 3: The nK^+ mass distribution as described by $\int d\phi_{K^+} |Y_{J_X,\lambda_X}(\theta_{K^+n},\phi_{K^+})|^2$, for $\Delta=\Delta(1232)$ and $J_X=\lambda_X=2$, $X=f_2$, (solid line), $J_X=\lambda_X=2$, $X=g_2$, (dashed line), and $J_X=3$, $J_X=1$, $J_X=g_3$ (dotted line). The $M_{nK^+K^-}$ invariant masses for the three cases are 2.22, 2.27 and 2.64 GeV, respectively. ### DIANA (ITEP, Xe bubble chamber, 850MeV K-beam) $$K^+Xe \to K_s^0 pXe'$$ no magnetic field particle identified by their range in Xe angular cut, p and Ks in the forward direction ### M.Zavertyaev, (hep-ph/0311250) Figure 2: The experimental beam momentum [5] and MC mass spectra distribution corresponding to: b) reaction $K^+Xe \to K_s^0pXe'$; c) reaction $K^+n \to K_s^0p$; d) the summ of both b) and c); The histogram in red corresponds to the experimental mass distribution from [5]. **Figure 5.** Figure (a) is a schematic of the decay $\Lambda^0(1115) \rightarrow \pi^- p$. The effect of spurious ghost tracks from the reconstruction software is considered. In this case a π^+ track is generated. When combined with the π^- from the Λ^0 the effective mass clusters about $0.5 \text{ GeV}/c^2$ as in Figure (b) and when the ghost track is combined with the Λ^0 decay products the effective mass clusters around 1.5 GeV/c^2 as seen in Figure (c). In the shaded distributions the " π^+ " $\pi^$ mass is required to be near the K_S^0 . The mean of the shaded portion of the distribution in Figure (c) is 1.54 GeV/ c^2 , the mass of the θ^+ . In this study the Λ^0 momentum in the LAB frame was uniform from 2 to 100 GeV/c. Hyper CP @ FNAL #### POS BEAM, -50.lt.Z.lt.150, MOM3.gt.0.5*Ptot #### E871/HyperCP, M.Longo @ QNP04 90% CL limit ~370 events out of 150000 K^0 -p candidates. P1 is the amplitude of the gaussian. Bins are 2 MeV Hymerce Prelimine Pentaquark sightings come from low statistics, low resolution, low-energy experiments with kinematically constrained final states after complicated cuts are imposed. High resolution, high statisites, experiments with both low- and high- particle multiplicity do not report the pentaquarks. #### 3-particle Dalitz plot FIG. 1: Boundaries of the m_{KK}^2 versus m_{KN}^2 Dalitz plot for three different values of w, the energy available to the $K\bar{K}N$ system, 2.1, 2.4 and 2.6 GeV. For the data of ref. [2], the observed distribution in w rises from 2.1 GeV, peaks at 2.4 and falls to zero near 2.6 GeV. Horizontal lines denote the region spanned by the f_2 and a_2 mesons defined by their half-widths and the region of the ρ_3 starting with its central mass less its half-width. The vertical line denotes the square of the Θ mass. Fig. 1. $\rho^0 \pi^+$ photoproduction via one-pion-exchange. $$\frac{d\sigma}{dt}(\gamma p \to A_2^+ n) = \frac{\pi}{64} \frac{g_{\pi NN}^2}{4\pi} \frac{g_{A\pi\gamma}^2}{4\pi}$$ $$\times \frac{1}{m_A^6 k^2 s} \frac{|t|(t-m_A^2)^4}{(t-\mu^2)^2},$$ Three is no known method for "fine tuning" Regge theory Fig. 3. Momentum transfer dependence of a_2^+ photoproduction cross section. Data is from Ref. [15]. Solid line is the OPE prediction corrected to account for absorption. Dashed line is the pure OPE prediction and the dotted line is the $A \exp(-bt)$ parameterization. "N*" mass $$M_{N^*} = 2.23 GeV$$ $$M_{N^*} = 2.27 GeV$$ $$M_{N^*} = 2.64 GeV$$ $$M_{nK^+K^-} = M_{N^*}$$ is sharp! $$\cos \theta_{\pi}^* > 0.8$$ correlates n with K^+K^- helicity ->possible kinematic reflection from K^+K^- resonance #### COSY-TOF $pp \rightarrow \Sigma^+ K_S^0 p$ # no magnetic filed, PID, pure geometry TOF no used in this analysis!