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Abstract. I review recent progress in the physics of parton shower Monte Carlos, emphasizing
the ideas which allow the inclusion of higher-order matrix elements into the framework of event
generators
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Reliable predictions of cross sections and final-state distributions for QCD processes
are a crucial ingredient in high-energy collider experiments, not only as a test of QCD
but also for new particle searches. All systematic approaches to this problem are based
on fixed-order (FO) results in perturbation theory, and yield (usually at the next-to-
leading order, NLO) the best available results for sufficiently inclusive observables.
However, in many cases a more exclusive description of final states is needed. In
such cases, in which one also combines perturbative calculations with a model for
the conversion of partonic final states into hadrons, Monte Carlo (MC) simulations
are generally adopted. MC’s operate on partonic states with high multiplicity and low
relative transverse momenta, which are obtained from a parton shower or dipole cascade
approximation to QCD dynamics. This has to be confronted with FO results, which can
describe the complementary region of small multiplicities, and large relative transverse
momenta.

The lack of large transverse momentum emissions, and the fact that total rates are
computed to leading order accuracy only, are serious problems in MC simulations,
especially when the c.m. energies are in the TeV range. These problems can be solved
by a suitable combination of MC and FO methods. Given the flexibility of MC’s, it is
actually desirable to embed as much as possible of FO information into the framework
of MC simulations, since the other way around would just prove to be too complicated.
In order to explain how this could be done, it is useful to briefly remind how an
MC works: for a given process, which at the LO receives contribution from 2 → n0
reactions, (2 + n0)-particle configurations are generated, according to exact tree-level
matrix element (ME) computations. The quarks and gluons (partons henceforth) among
these primary particles are then allowed to emit more quarks and gluons, which are
obtained from a parton shower or dipole cascade approximation to QCD dynamics. To
lessen the impact of this approximation on physical observables, one can devise two
strategies. The first aims at having nE extra hard partons in the final state; thus, in the
example given above, the number of final-state hard particles would increase from n0 to
n0 +nE. This approach is usually referred to as matrix element corrections (MEC), since
the MC must use the (2+n0 +nE)-particle ME’s to generate the correct hard kinematics.
The second strategy also aims at simulating the production of n0 +nE hard particles, but



improves the computation of rates as well, to NnE LO accuracy. I’ll generally denote the
resulting MC as NnE LOwPS.

There are basically two major problems in the implementation of MEC. The first prob-
lem is that of achieving a fast computation of the ME’s themselves for the largest possi-
ble n0 + nE , and an efficient phase-space generation. A variety of solutions exist nowa-
days for this problem, implemented in packages which I’ll denote as ME generators;
popular ones include AlpGEN [1], CompHEP [2], Grace [3], and MadEvent [4]. The
second problem stems from the fact that multi-parton ME’s are IR divergent. Clearly, in
hard-particle configurations IR divergences don’t appear; however, the definition of what
hard means is, to a large extent, arbitrary. In practice, hardness is achieved by imposing
some cuts on suitable partonic variables, such as pT ’s and (η,ϕ)-distances. I collectively
denote these cuts by δsep. One assumes that n hard partons will result (after the shower)
into n jets; but, with a probability depending on δsep, a given n-jet event could also re-
sult from n+m hard partons. This means that, when generating events at a fixed n0 +nE

number of primary particles, physical observables in general depend upon δsep; I refer
to this as the δsep-bias problem. Any solution to the δsep-bias problem implies a proce-
dure to combine consistently ME’s with different n0 +nE’s. It should be stressed that, in
presence of a δsep bias, the interface of an ME generator (which is responsible for pro-
ducing the hard configurations, i.e. the initial conditions for the shower), and a parton
shower code is not, strictly speaking, an event generator (EvG), since the events depend
somehow on the value of δsep. In practice, the dependence is of the order of 20%, which
is acceptable if one considers that, without MEC, multi-jet configurations predicted by
standard MC’s are completely unreliable. A solution to the δsep-bias problem has been
presented, for e+e− collisions, in ref. [5] (CKKW henceforth), and subsequently ex-
tended (without formal proof) to hadronic collisions in ref. [6]; an alternative method
for colour-dipole cascades has been presented in ref. [7]. Loosely speaking, CKKW
achieve the following: if an n-jet observable is affected by the δsep bias in the following
way

σn ∼ αn−2
S ∑

k

akαk
S log2k δsep , (1)

by applying the CKKW prescription one gets

αn−2
S (δ a

sep +∑
k

bkαk
S log2k−2 δsep) . (2)

There is a considerable freedom in the implementation of the CKKW prescription in
the case of hadronic collisions. This freedom is used to tune (some of) the EvG’s
parameters in order to reduce as much as possible the δsep dependence, which typically
manifests itself in the form of discontinuities in the derivative of the physical spectra. A
discussion on these issues, with practical examples of the implementation of CKKW in
HERWIG and PYTHIA, can be found in ref. [8]. CKKW has also been implemented in
SHERPA [9]; an alternative procedure, proposed by Mangano, is being implemented in
AlpGEN.

I stress that the complete independence of δsep cannot be achieved; this would be
possible only by including all diagrams (i.e., also the virtual ones) contributing to a
given order in αS. This fact appears to be pretty obvious: it is well known, and formally



established by the BN and KLN theorems, that the infrared and collinear singularities
of the real matrix elements are cancelled by the virtual contributions. One may in
fact be surprised by the mild δsep dependence left in the practical implementation of
CKKW (see for example ref. [8]); however, we should keep in mind that parton showers
do contain part of the virtual corrections, thanks to the unitarity constraint which is
embedded in the Sudakov form factors. However, to cancel exactly the δsep dependence
there is no alternative way to that of inserting the exact virtual contributions to the
hard process considered. In doing so, one is also able to include consistently in the
computation the K factor. It is important to realize that this is the only manner to obtain
this result in a theoretically consistent way. The procedure of reweighting the EvG’s
results to match those obtained with fixed-order codes for certain observables must
be considered a crude approximation (since no fixed-order computation can keep into
account all the complicated final-state correlations that are present when defining the
cuts used in experimental analyses).

The desirable thing to do would be that of adding the virtual corrections of the same
order as all of the real contributions to CKKW implementations. Unfortunately, this is
unfeasible, for practical and principle reasons. The practical reason is that, at variance
with real corrections, we don’t know how to automatize efficiently the computations of
loop diagrams in the Minkowskian kinematic region. The principle reason is that there’s
no known way of achieving the cancellation of infrared and collinear divergences in
an universal and observable-independent manner beyond NLO. We have thus to restrict
ourselves to the task of including NLO corrections in EvG’s, i.e. nE = 1 in the notation
used above.

The fact that only one extra hard emission can be included in NLOwPS’s is the rea-
son why such codes must be presently seen as complementary to MEC. When one is
interested in a small number of extra emissions, then NLOwPS’s must be considered su-
perior to MEC; on the other hand, for studying processes with many hard legs involved,
such as SUSY signals or backgrounds, MEC implementations should be used. A realis-
tic goal for the near future is that of incorporating the complete NLO corrections to all
the processes with different nE’s in CKKW.

The striking feature of an NLOwPS is the computation of loop diagrams (which are
necessary in order to compute total rates to NLO accuracy); this in general implies the
presence of negative weights. This is a new feature in MC’s, which however doesn’t spoil
their probabilistic nature. In fact, in NLOwPS the distributions of positive and negative
weights are separately finite, at variance with what happens in NLO computations; thus,
each of them can be unweighted and evolved separately, since no cancellation between
large numbers is involved in this procedure. On the other hand, the contribution of loop
diagrams implies that the δsep-bias problem which affects ME corrections is simply
not present. This advantage comes at a price: KLN cancellation cannot be achieved
any longer solely at the level of Sudakov form factors through unitarity, since virtual
and real matrix elements are now explicitly present in the computation. Technically,
this complicates enormously the problem wrt the case of MEC: KLN cancellation is
inclusive by nature, and one wants to achieve it here in the context of a parton shower
MC, whose final state is fully exclusive thanks to the use of a hadronization model. A
solution to this problem has been presented for the first time in ref. [10]. It is based on
the observation that, upon formally expanding an MC result in αS, the first non-trivial



order obtained in this way must match the behaviour of the fixed-order computations
at the same order, and in the collinear limit. Thus, the O(αS) MC result can be used
effectively to cancel locally the matrix element singularities. It can be shown [10]
that, after the subtracted matrix elements are matched to the shower, the singularity
cancellation achieved in this way is equivalent to the KLN one for inclusive observables,
up to power-suppressed terms (which are not correctly included anyhow in results based
on collinear factorization theorems).

The strategy outlined above has been implemented in MC@NLO [10, 11], which
features a steadily-growing number of production processes in hadronic collisions,
such as single vector and Higgs bosons, vector boson pairs, heavy quark pairs, lepton
pairs, and Higgs boson in association with a W or Z [12]. Apart from MC@NLO
there are at present only a couple of NLOwPS hadronic codes, Φ-veto [13] and
GRACE_LLsub [14], which feature only single-Z production. On the other hand, there
has been a substantial theoretical activity in the field in the past few years, which will
certainly lead to more practical implementation of NLOwPS in the future. Nason [15]
has proposed a method for constructing NLOwPS’s that should result in a smaller num-
ber of negative weights wrt those obtained with MC@NLO. Collins and Zu [16] have
defined a framework in which the shower can be improved beyond the LL accuracy;
at the moment, the method cannot work in QCD, since it does not include a proper
treatment of soft emissions. Soper and Nagy [17] attempt to introduce a formalism in
which NLOwPS techniques are embedded in a CKKW framework, thus potentially
improving the latter by adding an extra O(αS) accuracy for each emission. Finally, one
should not forget that a lot of work is being done on different aspects of standard MC’s:
see ref. [18]).
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