Transverse momentum resummation at small x

... or ...

W/Z/Higgs Production & Uncertainties

Fred Olness

SMU

Motivation: W, Z, Higgs Production

Fundamental SM Parameter

Precision M_w provides clues of Higgs

Higgs discovers relies on accurate predictions

details depend on channel

NLO QCD Corrections to Boson Production

Vector boson production at hadron-hadron colliders

No QCD radiation
$$q$$
 \longrightarrow \bar{q} W

Ingredients for full q_T distribution

W/Z/HIGGS Kinematics

What is relevant x region for W/Z/Higgs Production

$$\sigma = f(x_A) f(x_B) \hat{\sigma}$$

x range

for LHC

This is the region of present measurement

This is the region we need at LHC

LHC probes new {x,Q} range.

Requires extrapolation

HERA has measured the crossed process (DIS) for this region and found ...

Differential energy flow at small-x???

What new effects appear at small-x???

HERA measured DIS eq→eq

Observed additional q_T broadening at small-x (x<0.01)

This effect is <u>beyond</u> the usual Sudakov soft gluon resummation

Source: Log(1/x) terms??? BFLK???

We'll parameterize our ignorance

$$e^{-S(q_T,Q)} \rightarrow e^{-S(q_t,Q)-\rho(x)q_T^2} \rightarrow e^{-S(q_t,Q)-\rho(x)q_T^2}$$
Only turns on at small-x

Additional small-x broadening term Form taken from HERA data

J. C. Collins, D. E. Soper and G. Sterman, Nuc. Phys. B250, 199 (1985)

J. C. Collins and A. Metz, hep-ph/0408249..

What are the implications for LHC???

Drell-Yan $(qq \rightarrow W/Z//H \rightarrow ee)$ at

LHC is simply crossed DIS process

Apply to LHC:

Use ResBos (Resummed Boson Production Code):

Implements Sudakov soft gluon resummation via CSS

Collins, Soper Sterman

Include small-x broadening in Sudakov exponent

actually implemented in b-space

$$e^{-S(q_T,Q)} \ \rightarrow \ e^{-S(q_t,Q)-\rho(x)q_T^2}$$

Additional small-x broadening term Form taken from HERA data

Only turns on at small-x

$$\rho(\mathbf{x}) = \mathbf{c}_0 \left(\sqrt{\frac{1}{\mathbf{x}^2} + \frac{1}{\mathbf{x}_0^2}} - \frac{1}{\mathbf{x}_0} \right)$$

$$x_0 = 0.005$$

 $c_0 = 0.013$

Crossing is valid.
See Collins & Metz

J. C. Collins, D. E. Soper and G. Sterman, Nuc. Phys. B250, 199 (1985).

J. C. Collins and A. Metz, hep-ph/0408249.

Z Production at the Tevatron

Position of q_T peak shifts by 25%

Z Production: Tevatron & LHC

Tevatron

LHC

With cuts on y_e and p_{Te}

No y cut necessary !!!

What is the uncertainty???

 x_0 is a measure of where small x effects turn on

Fundamental SM Parameter

Precision M_w provides clues of Higgs

W Production at the Tevatron

Potentially, this effect can limit precision of M_w determination

W Production at the LHC

effect present in central rapidity region

Higgs discovers relies on accurate predictions

Effect on Higgs

Broadening not important for discovery

Important for precise M_H measurement i.e., to characterize SUSY model

Reduced effect on Higgs

Consequence of y distribution

Summary

- * Small-x DIS data provide important constraints on the PDF's PDF's are essential ingredient for exploration of Higgs, SUSY, and other "New Physics" signals
- * LHC probes smaller x values:

 Resummation & Log(1/x) effects can alter W/Z/Higgs production

 Significant impact for LHC

Tevatron can observe such effects in forward (y~2) region

* Need to accommodate these effects and uncertainties
Make best use of HERA & Tevatron data
Be prepared to cross-check using early LHC data

BACKUP

W/Z Production at Tevatron

Berge, Nadolsky, Olness, Yuan, hep-ph/0410375.

What is effect of additional q_T broadening at LHC

Result of this effect:

Shift of distribution
Shift of normalization

This will effect M_w measurement at both Tevatron and LHC

Tevatron can look for this effect by measuring forward W and Z production

These uncertainties are not acceptable for "benchmark" processes

Another source of uncertainty for the PDFs

Inclusion of new strongly interacting particles (e.g., gluino) affect PDF's at higher scales.

Bulk of PDF constraints are at low Q scales

Strong correlation between s, gluino (and gluon)

Will affect gluon production of Higgs

Running of $_{s}(\mathbf{Q})$ with thresholds

New thresholds can significantly alter PDF's at large Q

Global fit to many different experiments provides proton structure

1996: Excess High E_T Jets at Tevatron Is this a sign of compositeness?

1997: Excess DIS events at large $\{x,Q^2\}$ Is this a sign of lepto-quarks?

H1 Collaboration, ZPC74, 191 (1997) ZEUS Collaboration, ZPC74, 207 (1997)

Precision PDF's are an essential ingredient for the Search For New Physics