

Eric Eckhart Colorado State University Representing the BaBar Collaboration BABAR April 28, 2005

Introduction: Previous Searches

- $\Theta(1540)^+ \rightarrow pK_s \text{ or } nK^+$
 - 13 positive claims;
 - 17 negative claims.

- $\Xi_5(1860)^{---}$ and $\Xi_5(1860)^{0}$
 - 1 positive claim by NA49 at CERN;
 - 9 negative claims.

Introduction: Theory

The quark model allows the $SU(3)_F$ flavor group to include the following multiplets of five-quark states

Outline

- $\Theta(1540)^+ \rightarrow pK_s$
 - Inclusive search in electro- and hadroproduction on BaBar detector material;
 - Inclusive search in e⁺e⁻ production
- Inclusive search for $\Xi_5(1860)^- \rightarrow \Xi^- \pi^-$
- Inclusive search for $\Xi_5(1860)^0 \rightarrow \Xi^- \pi^+$
- $\Theta^{*++} \rightarrow pK^+$ in $B^+ \rightarrow p\overline{p}K^+$ decays.

PEP-II

Asymmetric e⁺e⁻ storage ring;

- Center-of-mass energy at or just below Y(4S) resonance (10.58 GeV);
- E $_{e-Beam} \sim$ 9 GeV, E $_{e+Beam} \sim$ 3 GeV.

BaBar

- Excellent tracking with SVT and DCH;
- Excellent particle identification using dE/dx from SVT and DCH; and Cherenkov angles from DIRC.

Search for $\Theta(1540)^+ \rightarrow pK_s$

Two Searches for $\Theta(1540)^+$ at BaBar

Search 1:

- Inclusive search in interactions between material in inner detector and
 - off-beam electrons or positrons (electro-production);
 - hadrons produced in e⁺e⁻ interactions (hadro-production).

Search 2:

■ Inclusive search in e^+e^- interactions - $e^+e^- \rightarrow \text{Anything} + \Theta(1540)^+$

Hadro-production and Electro-production at BaBar

Hadro-production: hadrons produced in e⁺e⁻ collisions interact with the detector material.

Electro-production: dipole magnets close to the interaction region bend offbeam electrons or positrons causing them to interact with the detector material.

 Roughly similar to a fixed target experiment.

- Use the full BaBar dataset;
- Reconstruct $\Theta(1540)^+ \rightarrow pK_{s'}, K_s \rightarrow \pi^+\pi^-;$
- Select K_s with geometric cuts and SVT and DCH dE/dx for π candidates;
- SVT and DCH dE/dx for proton candidates.

Spatial Distribution of pK_s Vertices

Silicon Vertex Tracker

- Plot the x vs. y position of the pKs vertices. -20
- Can produce features corresponding to the Be beam pipe, SVT wafers and supports, DCH support tube and inner DCH wall.
- Conclude that these pK_s events result from electro- and hadro-production interactions with material in the BaBar detector.

⊖(1540)⁺ in Electro- and Hadro-Production: Results

- Plot M(K_sp) for all (both electro- and hadro-produced) K_sp vertices.
- There is no enhancement around 1540 MeV/c²;
- Summed sidebands are the same width as signal region;
- Mass resolution (HWHM) is 2 MeV/c² at 1540 MeV/c².

⊖(1540)⁺ in Electro-Production Only: Results

- e^+ and e^- beams are bent into head-to-head collisions in the horizontal plane (y=0).
- High-intensity regions at y=0 result primarily from e⁺ and e⁻ collisions instead of hadronic interactions.
- Events produced in electro-production can be greatly enhanced by looking at these regions.

Θ(1540)+ in e+e⁻ Production: Details

- Use 123 fb⁻¹ (90% on Y(4s) resonance, 10% off);
- Reconstruct $\Theta(1540)^+ \rightarrow pK_s, K_s \rightarrow \pi^+\pi^-;$
- Select K_s using geometric cuts;
- Identify protons using dE/dx and Cherenkov angle;
 - 55-99% efficiency with 95-99% rejection of π/K .

Θ(1540)+ in e+e⁻ Production: Results

- No enhancement near 1540 GeV/c²;
- Clear $\Lambda_c^+ \rightarrow pK_s$ signal with 98,000 candidates;
- Mass resolution (HWHM) is 2 MeV/c² at 1540 MeV/c².

The production mechanism for pentaquarks is unknown. Perhaps if we look at different momentum regions we will see a signal....

Θ(1540)⁺ in e⁺e⁻ Production: Yield vs. Momentum

- Define p^{*} = momentum of Θ⁺ candidate in Y(4s) rest frame;
- Separate events into 10 p* bins 500 MeV/c wide;
- Fit signal for each bin using two different estimates for Γ_{Θ(1540)}: 8 and 1 MeV/c²;
- Yields consistent with zero.

Search for $\Xi_5(1860)^{--}$ and $\Xi_5(1860)^{0}$

- Geometric selection of two displaced vertices
- Loose particle ID
- Select masses near the nominal Λ^0 and $\Xi^{\scriptscriptstyle -}$ masses
- Control particles: $\Xi^{*0}(1530) \rightarrow \Xi^{-}\pi^{+}, \Xi_{c}(2470) \rightarrow \Xi^{-}\pi^{+}$

Search for $\Xi_5(1860)$: Results

- No enhancement around 1860 MeV/c².
- See clear peaks for $\Xi(1530)^0$ (24,000 candidates) and $\Xi_c(2470)^0$ (8,000 candidates).
- Fit $\Xi_5(1860)^{--}$ and $\Xi_5(1860)^0$ signal in 10 p^{*} bins 500 MeV/c wide using $\Gamma_{\Xi(1860)}$ of 1 and 18 MeV/c².
- Signal is consistent with zero for all p* bins.

Comparison of Pentaquark and Baryon Production Rates

- Assume the following:
 - pentaquarks have $J = \frac{1}{2}$;
 - $BF(\Theta_5(1540)^+ \rightarrow pK_s) = 25\%;$
 - $BF(\Xi_5(1820)^{--} \to \Xi^-\pi^-) = 50\%$.
- BF for Ξ^0 is very unclear.
- Limits are below expectations for baryons:
 - Θ₅(1540)⁺ by a factor of 7-16;
 - $\Xi_5(1820)^{--}$ by a factor of 4-5.

Search for Θ^{*++}

	uddds uudds uu udddu dddsu ddssu dsssu	uuuds Θ^* uuuudd Δ^* uuuusd X_{1s} uuussd X_{2s} usssd Ω^*
Theoretical Predictions	m(@*++), GeV/c ²	Г(Θ*++), MeV
B.Wu & B.Q.Ma, Phys.Rev.D, 69 077501(2004)	1.6	<43
D. Borisyuk <i>et al,</i> hep-ph/0307370	1.595	80
H. Walliser <i>et al.</i> , J.Exp.Theor.Phys., 97 433(2004)	1.64-1.69	
J. Ellis <i>et al.</i> , JHEP 0405:002		37-66

- $\Theta^{*++} \rightarrow K^+p$ mode thought to be dominant
- Searches for new particles in K⁺p scattering: no sign of Θ^{*++} , constrains $\Gamma(\Theta^{*++}) < 15$ MeV
- Not seen by experiments that claim Θ^+ (CLAS, HERMES, SAPHIR, ZEUS)
- No previous searches in B decays (idea: Phys.Lett.B, 587 62(2004))

Search for Θ^{*++} : Analysis Details

- Search for $\Theta^{*++} \rightarrow pK^+$ in $B^+ \rightarrow p\overline{p}K^+$
- Use 81 fb⁻¹ on the Y(4S) resonance (89M B[±] mesons)
- Use tracking, particle ID and pair-production kinematics to isolate $B^{\pm} \rightarrow p\bar{p}K^{\pm}$ signal
- Major Backgrounds:
 - Baryons from the continuum (suppress topologically)
 - B decays with charmonium: $B^{\pm} \rightarrow XK^{\pm}$, $X \rightarrow p\bar{p}$ (X= η_c , J/ ψ , χ_c , ψ (2S))

Search for Θ^{*++} : Results

- Plot M_{pK+} signal events inside and outside the charmonium region 2.85 < $M_{pp} < 3.15 \text{ GeV/c}^2$.
- No evidence of a Θ^{*++} signal.
- Establish upper limits for three different regions of M_{pK+}.

Summary

- There is copious production $\Lambda^0, \Xi^-, \Xi^{*0}, \Omega^-$, Ξ_{c}^{0} , Λ_{c}^{+} baryons at BaBar;
- There is no evidence for $\Theta(1540)^+ \rightarrow pK_s$ in e⁺e⁻ interactions, or electro- or hadroproduction in the detector material;
- There is no evidence for $\Xi_5(1860)^{-1}$ or $\Xi_{5}(1860)^{0}$ states;
- Limits on $\Theta(1540)^+$ and $\Xi_5(1860)^-$ production are well below baryons of similar mass;
- There is no evidence for $\Theta^{*++} \rightarrow pK^+$ in B^+ $\rightarrow ppK^+$.