Mission statement	The HERMES experiment	Analysis	

The fragmentation process at HERMES DIS 2005 - XIII International Workshop on Deep Inelastic Scattering

Bino Maiheu on behalf of the HERMES Collaboration

University of Gent, Belgium Subatomic and Radiation Physics bino@inwfsun1.ugent.be

UGent

< 🗇 🕨

(4) (3) (4) (4) (4)

Bino Maiheu

Mission statement	The HERMES experiment	Analysis	

2 The HERMES experiment

Bino Maiheu

Mission statement

- SIDIS : $e + N \rightarrow e' + h + X$
- how do partons inside the nucleon break free to form hadrons ?

イロト イヨト イヨト イヨト

- described by $D_f^h(z, Q^2)$
- scale Q^2 , momentum fraction x_{bj}
- $z = E_h/\nu$, where $\nu = E E'$

flavor/charge separated hadron multiplicities $\frac{1}{N^{D/5}} \cdot \frac{dN^h(z,Q^2)}{dz} = \frac{\sum_{f} e_f^2 \int_{0}^{1} dx \ q_f(x,Q^2) D_f^h(z,Q^2)}{\sum_{f} e_f^2 \int_{0}^{1} dx \ q_f(x,Q^2)}$

UGent

Bino Maiheu

Mission statement

- SIDIS : $e + N \rightarrow e' + h + X$
- how do partons inside the nucleon break free to form hadrons ?

イロト イヨト イヨト イヨト

- described by $D_f^h(z, Q^2)$
- scale Q^2 , momentum fraction x_{bj}
- $z = E_h/\nu$, where $\nu = E E'$

flavor/charge separated hadron multiplicities $\frac{1}{N^{DIS}} \cdot \frac{dN^{h}(z,Q^{2})}{dz} = \frac{\sum_{f} e_{f}^{2} \int_{0}^{1} dx \ q_{f}(x,Q^{2}) D_{f}^{h}(z,Q^{2})}{\sum_{f} e_{f}^{2} \int_{0}^{1} dx \ q_{f}(x,Q^{2})}$

UGent

Bino Maiheu

Mission statement

- SIDIS : $e + N \rightarrow e' + h + X$
- how do partons inside the nucleon break free to form hadrons ?

イロト イヨト イヨト イヨト

- described by $D_f^h(z, Q^2)$
- scale Q^2 , momentum fraction x_{bj}
- $z = E_h/\nu$, where $\nu = E E'$

UGent

Bino Maiheu

Mission statement	The HERMES experiment	Analysis	

Motivation

- flavor separation of multiplicities : HERMES allows us to do this (RICH)
- Importance of this study at HERMES ?
 - test factorization at HERMES energies $\sqrt{s} \approx 7$ GeV
 - study fragmentation functions that were developed for e⁺e⁻ at high energies
 → still valid at ⟨Q²⟩ of 2.5 GeV² ?
- note : exclusive VM production → contribution of hadrons in SIDIS sample. Totally different process ! ← correct for this.
- aim is to extract absolute numbers : difficult with HERMES acceptance !

UGent

▲□ ► ▲ □ ► ▲ □

- - Ilavor separation of multiplicities : HERMES allows us to do this (RICH)
 - Importance of this study at HERMES ? ٢
 - test factorization at HERMES energies $\sqrt{s} \approx 7$ GeV
 - study fragmentation functions that were developed for $e^+e^$ at high energies \rightsquigarrow still valid at $\langle Q^2 \rangle$ of 2.5 GeV² ?
 - note : exclusive VM production → contribution of hadrons in

- 4 回 🕨 🔺 臣 🕨 🔺 臣

- Ilavor separation of multiplicities : HERMES allows us to do this (RICH)
- Importance of this study at HERMES ? ٢
 - test factorization at HERMES energies $\sqrt{s} \approx 7$ GeV
 - study fragmentation functions that were developed for $e^+e^$ at high energies \rightsquigarrow still valid at $\langle Q^2 \rangle$ of 2.5 GeV² ?
- note : exclusive VM production ~> contribution of hadrons in SIDIS sample. Totally different process $! \leftarrow$ correct for this.
- aim is to extract absolute numbers : difficult with HERMES acceptance !

UGent

The HERMES experiment

- 27.6 GeV e⁺ beam at HERA (DESY)
- fixed gaseous internal H,D,... target (pol/unpol)
- lepton/hadron efficiency > 98%
- Ring Imaging Čerenkov (RICH)
- excellent efficiency : 2 < p < 15 GeV/c,
- hadron identification
 - π : 98%, K: 88%, p: 85%

・ロト ・回ト ・ヨト ・ヨ

Bino Maiheu The fragmentation process at HERMES

The HERMES experiment

- 27.6 GeV e⁺ beam at HERA (DESY)
- fixed gaseous internal H,D,... target (pol/unpol)
- lepton/hadron efficiency > 98%
- Ring Imaging Čerenkov (RICH)
- excellent efficiency : 2 GeV/c,
- hadron identification
 - π : 98%, K: 88 %, p: 85 %

• • • • • • • • • • • •

RICH particle identification

•
$$\cos \theta_c = \frac{c}{nv} = \frac{1}{\beta n}$$

• two radiators: aerogel and C_4F_{10}

- cone projections and reconstruct Čerenkov angles (Ray Tracing)
- first dual radiator RICH

・ 回 と ・ ヨ と ・ ヨ と

HERMES

data production

UGent

Bino Maiheu

UGent

イロト イヨト イヨト イヨト

Bino Maiheu

UGent

Bino Maiheu

Bino Maiheu

Hadron PID correction

- important : extracting absolute numbers
- correct for misidentification
- \mathcal{P}_t^i : probability that a particle of type t was identified as type i.

$$\begin{pmatrix} I_{\pi} \\ I_{K} \\ I_{P} \end{pmatrix} = \begin{pmatrix} \mathcal{P}_{\pi}^{\pi} & \mathcal{P}_{K}^{\pi} & \mathcal{P}_{P}^{\pi} \\ \mathcal{P}_{\pi}^{K} & \mathcal{P}_{K}^{K} & \mathcal{P}_{P}^{K} \\ \mathcal{P}_{\pi}^{P} & \mathcal{P}_{K}^{P} & \mathcal{P}_{P}^{P} \end{pmatrix} \cdot \begin{pmatrix} N_{\pi} \\ N_{K} \\ N_{P} \end{pmatrix}$$

- \mathcal{P} obtained from GEANT3 description of RICH
- $\vec{N} = \mathcal{P}_{trunc}^{-1} \cdot \vec{I}$
- \rightsquigarrow weight for hadron tracks

Analysis

Performance modeling of the RICH

non-perfect knowledge of the response of the RICH \rightsquigarrow systematic uncertainty

only one RICH :-) \rightsquigarrow no independent check for hadron efficiency over full momentum range and for different event topologies

2 tunes in RICH MC description :

- β = 1 particles : tune Čerenkov angle and photon yield distributions with electrons
- hadrons : tune using decaying particles (φ, K_S, Λ) from PYTHIA and data

<ロト </p>

 \Rightarrow systematic uncertainty on the $\mathcal P$ matrix

UGent

Bino Maiheu

- exclusive VM production : totally different process than SIDIS.
- estimate contribution from MC (VMD+SIDIS): PYTHIA 6 (adapted e.g. RADGEN)
- ratio : $N_{diffr}^{h}(z)/N_{SIDIS}^{h}(z)$
- large contribution at high z (\sim 40 50 %) for π
- kaons only contribution of about 10 %

▲ 圖 ▶ ▲ 国 ▶ ▲ 国

UGent

Bino Maiheu

Contamination from exclusive VM processes

- exclusive VM production : totally different process than SIDIS.
- estimate contribution from MC (VMD+SIDIS): PYTHIA 6 (adapted e.g. RADGEN)
- ratio : $N_{diffr}^{h}(z)/N_{SIDIS}^{h}(z)$
- large contribution at high z (\sim 40 50 %) for π
- kaons only contribution of about 10 %

3

Smearing/Acceptance correction

Smearing moves events from one kinematic bin into another. The flow is represented by $S(i,j) \rightarrow \text{aim}$ is to move the events back !

- smearing involves both detector effects (track reconstruction) as well as QED radiative corrections
- treat all of the smearing with acceptance correction in one go

A (10) A (10) A (10)

- reduce model dependency $S(i,j) = n(i,j)/n^B(j)$
- clear treatment of the uncertainties involved

Smearing/Acceptance correction

Smearing moves events from one kinematic bin into another. The flow is represented by $S(i,j) \rightarrow \text{aim}$ is to move the events back !

- smearing involves both detector effects (track reconstruction) as well as QED radiative corrections
- treat all of the smearing with acceptance correction in one go

A (10) < A (10) </p>

- reduce model dependency $S(i,j) = n(i,j)/n^B(j)$
- clear treatment of the uncertainties involved

The HERMES acceptance

Acceptance very small at small z, up to about 35 % at high zHowever the acceptance samples the phase space enough to fix the dynamics

Bino Maiheu

Another small word about the MC sample

- Use LEPTO generator together with the JETSET model
- JETSET tune :
- parton distribution parametrization in MC : CTEQ6
- QED radiative corrections : RADGEN
- Detector was described by either
 - Full GEANT3 description + tracking code
 - Smearing generator (track lookup + kinematical smearing p, $\theta_x, \; \theta_y, \; \dots \;$)

UGent

イロト イポト イヨト イヨ

Bino Maiheu

Analysis

Q^2 evolution

•
$$\frac{\sum_{f} e_{f}^{2} \int_{0}^{1} dx \ q_{f}(x, Q^{2}) D_{f}^{h}(z, Q^{2})}{\int_{0}^{1} \frac{dx}{x} F_{2}(x, Q^{2})}$$

• Q² variation small in z, but... e.g. vs. x_{bj}

• want to compare to EMC (
$$Q^2 \approx 25$$
)

- use PKH (Kretzer) parametrization + CTEQ6 MS
- systematic error on the correction factor (ALLM, integration, PDF set, NLO FF)
- vs z : ~ 1 2% (Q_0^2 ~ 2.5), up to 50 % (Q_0^2 ~ 25)
- vs x_{bj} : up to 50 %

hermes

UGent

Bino Maiheu

イロト イ団ト イヨト イヨト

UGent

Results for pions :: multiplicity versus z

Systematic uncertainty mainly from hadron PID correction
O² > 1 GeV². W² > 10 GeV²

Bino Maiheu

Results for pions :: multiplicity versus z ($Q_0^2 = 25 \text{ GeV}^2$)

UGent

Bino Maiheu

イロト イヨト イヨト イヨト

UGent

Results for pions :: multiplicity versus Q^2 and x_{bj}

- improved analysis compared to old HERMES data
- weak *x*_{bj} dependence

Results for kaons :: multiplicity versus z

- charge separated kaon multiplicities
- systematic uncertainty (RICH)
- low K⁻ statistics, and note different scale !

UGent

- 4 三 + 4 三

Summary

- extraction of charge and flavor separated hadron multiplicity distributions
- much attention went to obtain model independent results and clear treatment of uncertainties
- compared Q^2 dependence with e^+e^- FF developed at much higher Q^2
- first extraction of kaon multiplicities
- no signs for strong factorization breaking

UGent