

Outline

- Why is the forward region important?
- Forward jet selection
- Theoretical Calculations / MC Models
- Results
- Conclusions

Albert Knutsson - Forward Jets in DIS

Test QCD at small x. Signals of parton dynamics beyond DGLAP?

Kinematic range and Measurements

Kinematic range

 $5 < Q^2 < 85 \text{ GeV}^2$ 0.1 < y < 0.7 $0.0001 < x_{Bj} < 0.004$ $10 \text{ GeV} < E'_e$

Measurements

Forward jet cross-sections $\frac{d\sigma}{dx_{Bj}}$ $\frac{d\sigma}{d^3\sigma}$ $\frac{d^3\sigma}{dx_{Bj}dp_t^2 dQ^2}$ 2+Forward jet cross-sections, $\frac{d\sigma}{d\Delta\eta_2}$

As a function of the rapidity

between the forward jet and

the most forward di-jet.

PDF: CTEQ6L , γ PDF: SaS1D Scales: $\mu_r^2 = \mu_f^2 = Q^2 + p_t^2$

QCD Models continue...

CDM (ARIADNE): LO ME (QPM, BGF). Color Dipole Model (QCDC and higher orders). Random walk in k_t .

PDF: CTEQ6L

CASCADE: LO ME. Initial state CCFM partons showers with emissions ordered in angle.

Fixed Order Calculations

DISENT: NLO di-jet (α_s^2) . (Forward jet cross-sections.) NLOJET++: NLO 3-jet (α_s^2) . (2+forward jet cross-sections.)

(Need to correct for hadronization effects.)

$\frac{d\sigma}{dx_{Bj}}$

Comparison to Exact Calculations (DISENT)

$$egin{aligned} \mu_{r}^{2} &= p_{t}^{2} \ \mu_{f}^{2} &= \langle p_{t, ext{fwdjet}}^{2}
angle &= 45 \; ext{GeV}^{2} \ 0.25 \mu_{r,f}^{2} &< \mu_{r,f}^{2} &< 4 \mu_{r,f}^{2} \ ext{PDF: CTEQ6M} \end{aligned}$$

- NLO di-jet ok for larger x_{Bj} .
- LO contribution $(\alpha_s) \ll$ NLO contribution (α_s^2)

$\frac{d\sigma}{dx_{Bj}}$

Comparison to QCD Models

- PS with DGLAP evolution similar to NLO.
- RG DIR+RES best.
- CDM and RG DIR+RES too low for lower x_{Bj} .
- CASCADE to low at lower x_{Bj} , to high at higher x_{Bj} .
- All models to low in lowest x_{Bj} -bin.

Cross-section as a function of x_{Bj} in $3x3 p_t^2 \cdot Q^2$ bins. No $\frac{p_t^2}{Q^2}$ -cut. (Different regions in $\frac{p_t^2}{Q^2} = r.$)

> Large x_{Bj} , Q^2 and $p_t^2 \Rightarrow$ NLO describes data Smaller x_{Bj} , Q^2 and $p_t^2 \Rightarrow$ NLO insufficient

Note different ranges in $x_{Bj}!$

Comparison to QCD models.

 $p_T^2 < Q^2 \ (r < 1)$ -DGLAP-like dynamics $p_T^2 \sim Q^2 \ (r \sim 1)$ -BFKL-like dynamics $p_T^2 > Q^2 \ (r > 1)$ resolved γ -like dynamics

- RAPGAP DIR fails, but is closest to the data in the most DGLAP like region
- RAPGAP DIR+ RES γ Good
- CDM Alright, but problems in res. γ region.
- CASCADE -Goes in the right direction.

2+forward jet cross-section, $\frac{d\sigma}{d\Delta n_2}$

Select two hardest jets ($p_t > 6 \text{ GeV}$) JET1 and JET2 in addition to the forward jet ($p_t > 6 \text{ GeV}$) - 2+Forward Jet Event. (No $\frac{p_t^2}{Q^2}$ -cut.)

 $\eta_e < \eta_{JET1} < \eta_{JET2} < \eta_{FWDJET}$

 $\Delta \eta_1 < 1$: small η separation between the two hard jets - small x_g - room for many emissions - long ladder favoured

 $\Delta \eta_1 > 1$: large η separation between the two hard jets - Shorter parton ladder

2+forward jet cross-section NLO 3-jet $1 + \delta_{had}$ calculations (NLOJET++)

$$\mu_r^2 = \mu_f^2 = \frac{p_{t,JET1}^2 + p_{t,JET2}^2 + p_{t,FWDJET}^2}{3}$$
$$0.25\mu_{r,f}^2 < \mu_{r,f}^2 < 4\mu_{r,f}^2$$

Data within scale uncertainity for $\Delta \eta_1 > 1$ ("short ladder"-region)

2+forward jet cross-section, $\frac{d\sigma}{d\Delta\eta_2}$ QCD Generators

- CDM close to describe the data.
- CASCADE closer to data than RG-DIR
- ME+PS fails, except for at high $\Delta \eta_2$ where $\Delta \eta_1 > 1$ (the "non-BFKLish"region), as is the case for the resolved photon model.

 $\Delta \eta_2$

Conclusions - Forward Jet Measurement

- Large x_{Bj} , Q^2 and $p_t^2 \to \text{NLO}$ dijet describes forward jet cross section. Small x_{Bj} , Q^2 and $p_t^2 \to \text{NLO}$ dijet fails.
- - DGLAP LO ME+PS (RAPGAP) and NLO di-jet fail for fwd jet cross-sections
 - CDM and LO ME+PS DIR+RESolved γ OK (except 2+fwdjet)
 - CASCADE is in improvement compared to simple DGLAP evolution.
- 2+fwd cross-section -

Models not ordering the transverse momenta still predict a higher cross-section. CDM good.

- Data suggests that more hard radiation (CDM, RES- γ , CASCADE) is needed compared to NLO and simple DGLAP evolution.
- Models that break the ordering of transverse momenta give better agreement with data (CDM, RES-γ, CASCADE), while simple DGLAP evolution restricts the phase space too much.